CReSt: A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents
- URL: http://arxiv.org/abs/2505.17503v1
- Date: Fri, 23 May 2025 05:56:25 GMT
- Title: CReSt: A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents
- Authors: Minsoo Khang, Sangjun Park, Teakgyu Hong, Dawoon Jung,
- Abstract summary: Large Language Models (LLMs) have made substantial progress in recent years, yet evaluating their capabilities in practical Retrieval-Augmented Generation (RAG) scenarios remains challenging.<n>We present CReSt (A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents), a benchmark designed to assess these key dimensions holistically.<n>CReSt comprises 2,245 human-annotated examples in English and Korean, designed to capture practical RAG scenarios that require complex reasoning over structured documents.
- Score: 6.359764486371197
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have made substantial progress in recent years, yet evaluating their capabilities in practical Retrieval-Augmented Generation (RAG) scenarios remains challenging. In practical applications, LLMs must demonstrate complex reasoning, refuse to answer appropriately, provide precise citations, and effectively understand document layout. These capabilities are crucial for advanced task handling, uncertainty awareness, maintaining reliability, and structural understanding. While some of the prior works address these aspects individually, there is a need for a unified framework that evaluates them collectively in practical RAG scenarios. To address this, we present CReSt (A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents), a benchmark designed to assess these key dimensions holistically. CReSt comprises 2,245 human-annotated examples in English and Korean, designed to capture practical RAG scenarios that require complex reasoning over structured documents. It also introduces a tailored evaluation methodology to comprehensively assess model performance in these critical areas. Our evaluation shows that even advanced LLMs struggle to perform consistently across these dimensions, underscoring key areas for improvement. We release CReSt to support further research and the development of more robust RAG systems. The dataset and code are available at: https://github.com/UpstageAI/CReSt.
Related papers
- Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey [29.186229489968564]
Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval.<n> evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components.
arXiv Detail & Related papers (2025-04-21T06:39:47Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity [23.48167670445722]
Retrieval-Augmented Generation (RAG) aims to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources.
evaluating these systems remains a crucial research area due to the following issues.
We propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline.
arXiv Detail & Related papers (2024-10-16T05:20:32Z) - Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
Legal case retrieval aims to provide similar cases as references for a given fact description.
Existing works mainly focus on case-to-case retrieval using lengthy queries.
Data scale is insufficient to satisfy the training requirements of existing data-hungry neural models.
arXiv Detail & Related papers (2024-10-09T06:26:39Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
We present InsCoQA, a novel benchmark for evaluating large language models (LLMs) in the context of conversational question answering (CQA)
Sourced from extensive, encyclopedia-style instructional content, InsCoQA assesses models on their ability to retrieve, interpret, and accurately summarize procedural guidance from multiple documents.
We also propose InsEval, an LLM-assisted evaluator that measures the integrity and accuracy of generated responses and procedural instructions.
arXiv Detail & Related papers (2024-10-01T09:10:00Z) - IRSC: A Zero-shot Evaluation Benchmark for Information Retrieval through Semantic Comprehension in Retrieval-Augmented Generation Scenarios [14.336896748878921]
This paper introduces the IRSC benchmark for evaluating the performance of embedding models in multilingual RAG tasks.
The benchmark encompasses five retrieval tasks: query retrieval, title retrieval, part-of-paragraph retrieval, keyword retrieval, and summary retrieval.
Our contributions include: 1) the IRSC benchmark, 2) the SSCI and RCCI metrics, and 3) insights into the cross-lingual limitations of embedding models.
arXiv Detail & Related papers (2024-09-24T05:39:53Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.