論文の概要: Ownership Verification of DNN Models Using White-Box Adversarial Attacks with Specified Probability Manipulation
- arxiv url: http://arxiv.org/abs/2505.17579v1
- Date: Fri, 23 May 2025 07:40:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.900683
- Title: Ownership Verification of DNN Models Using White-Box Adversarial Attacks with Specified Probability Manipulation
- Title(参考訳): 特定確率操作を用いたWhite-Box対応攻撃によるDNNモデルのオーナシップ検証
- Authors: Teruki Sano, Minoru Kuribayashi, Masao Sakai, Shuji Ishobe, Eisuke Koizumi,
- Abstract要約: 画像分類タスクのためのディープニューラルネットワーク(DNN)モデルのオーナシップ検証のための新しいフレームワークを提案する。
これにより、元のモデルを提示することなく、正当な所有者と第三者の両方によるモデルの同一性を検証することができる。
- 参考スコア(独自算出の注目度): 1.3048920509133806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel framework for ownership verification of deep neural network (DNN) models for image classification tasks. It allows verification of model identity by both the rightful owner and third party without presenting the original model. We assume a gray-box scenario where an unauthorized user owns a model that is illegally copied from the original model, provides services in a cloud environment, and the user throws images and receives the classification results as a probability distribution of output classes. The framework applies a white-box adversarial attack to align the output probability of a specific class to a designated value. Due to the knowledge of original model, it enables the owner to generate such adversarial examples. We propose a simple but effective adversarial attack method based on the iterative Fast Gradient Sign Method (FGSM) by introducing control parameters. Experimental results confirm the effectiveness of the identification of DNN models using adversarial attack.
- Abstract(参考訳): 本稿では,画像分類タスクのためのディープニューラルネットワーク(DNN)モデルのオーナシップ検証のための新しいフレームワークを提案する。
これにより、元のモデルを提示することなく、正当な所有者と第三者の両方によるモデルの同一性を検証することができる。
我々は,不正にコピーされたモデルを所有し,クラウド環境にサービスを提供し,ユーザが画像を投げて出力クラスの確率分布として分類結果を受信するグレーボックスシナリオを仮定する。
このフレームワークは、特定のクラスの出力確率を指定された値に調整するために、ホワイトボックスの逆攻撃を適用している。
原モデルの知識により、所有者はそのような逆例を生成できる。
本稿では,FGSM(Fast Gradient Sign Method)に基づく制御パラメータの導入による簡易かつ効果的な攻撃手法を提案する。
実験結果から, 敵攻撃を用いたDNNモデルの同定の有効性が確認された。
関連論文リスト
- Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeedは、フォトリアリスティックな自然対向サンプルを生成するための進化戦略に基づくアルゴリズムフレームワークである。
我々は,CMA-ESを用いて初期種ベクトルの探索を最適化し,条件付き拡散モデルで処理すると,自然逆数サンプルをモデルで誤分類する。
実験の結果, 生成した対向画像は画像品質が高く, 安全分類器を通過させることで有害なコンテンツを生成する懸念が高まっていることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:39:29Z) - DTA: Distribution Transform-based Attack for Query-Limited Scenario [11.874670564015789]
敵の例を生成する際、従来のブラックボックス攻撃法は攻撃対象モデルからの十分なフィードバックに依存している。
本稿では,攻撃された動作が限られた数のクエリを実行可能であることをシミュレートするハードラベル攻撃を提案する。
提案したアイデアの有効性とDTAの最先端性を検証する実験を行った。
論文 参考訳(メタデータ) (2023-12-12T13:21:03Z) - DeepTaster: Adversarial Perturbation-Based Fingerprinting to Identify
Proprietary Dataset Use in Deep Neural Networks [34.11970637801044]
我々は、被害者のデータを不正に使用して容疑者モデルを構築するシナリオに対処する、新しいフィンガープリント技術であるDeepTasterを紹介した。
これを実現するために、DeepTasterは摂動を伴う逆画像を生成し、それらをフーリエ周波数領域に変換し、これらの変換された画像を使用して被疑者モデルで使用されるデータセットを識別する。
論文 参考訳(メタデータ) (2022-11-24T11:10:54Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
本稿では,フェデレートラーニングにおけるバックドア攻撃を効果的に軽減する新しい防御機構であるCrowdGuardを提案する。
CrowdGuardでは、サーバロケーションのスタック化されたクラスタリングスキームを使用して、クライアントからのフィードバックに対するレジリエンスを高めている。
評価結果は、CrowdGuardがさまざまなシナリオで100%正の正の正の正の負の負の負の値を達成することを示す。
論文 参考訳(メタデータ) (2022-10-14T11:27:49Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
近年,ディープニューラルネットワーク(DNN)に対する敵対的攻撃が注目されている。
本稿では,画像の分布を操作することで,敵の例を再現する新しい手法を提案する。
本手法は,攻撃の伝達性を大幅に向上させ,未目標シナリオと目標シナリオの両方において最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T09:58:51Z) - DeepHider: A Multi-module and Invisibility Watermarking Scheme for
Language Model [0.0]
本稿では,モデル分類モジュールを置換し,モデル全体の微調整を行う新たな脅威を提案する。
私たちは、盗難の所有権ステートメントを防ぐために、タンパー保護やトレーサビリティといったブロックチェーンの特性を使用します。
実験の結果,提案手法は100%の透かし検証精度でオーナシップの検証に成功した。
論文 参考訳(メタデータ) (2022-08-09T11:53:24Z) - MOVE: Effective and Harmless Ownership Verification via Embedded External Features [104.97541464349581]
本稿では,異なる種類のモデル盗難を同時に防ぐために,効果的かつ無害なモデル所有者認証(MOVE)を提案する。
我々は、疑わしいモデルがディフェンダー特定外部特徴の知識を含むかどうかを検証し、所有権検証を行う。
次に、メタ分類器をトレーニングして、モデルが被害者から盗まれたかどうかを判断します。
論文 参考訳(メタデータ) (2022-08-04T02:22:29Z) - Adversarial Pixel Restoration as a Pretext Task for Transferable
Perturbations [54.1807206010136]
トランスファー可能な敵攻撃は、事前訓練された代理モデルと既知のラベル空間から敵を最適化し、未知のブラックボックスモデルを騙す。
本稿では,効果的なサロゲートモデルをスクラッチからトレーニングするための自己教師型代替手段として,Adversarial Pixel Restorationを提案する。
我々のトレーニングアプローチは、敵の目標を通したオーバーフィッティングを減らすmin-maxの目標に基づいています。
論文 参考訳(メタデータ) (2022-07-18T17:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。