ReqBrain: Task-Specific Instruction Tuning of LLMs for AI-Assisted Requirements Generation
- URL: http://arxiv.org/abs/2505.17632v1
- Date: Fri, 23 May 2025 08:45:46 GMT
- Title: ReqBrain: Task-Specific Instruction Tuning of LLMs for AI-Assisted Requirements Generation
- Authors: Mohammad Kasra Habib, Daniel Graziotin, Stefan Wagner,
- Abstract summary: Software engineers can engage with ReqBrain through chat-based sessions to automatically generate software requirements.<n>Top-performing model, Zephyr-7b-beta, achieved 89.30% Fl using the BERT score and a FRUGAL score of 91.20 in generating authentic and adequate requirements.
- Score: 4.475603469482274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Requirements elicitation and specification remains a labor-intensive, manual process prone to inconsistencies and gaps, presenting a significant challenge in modern software engineering. Emerging studies underscore the potential of employing large language models (LLMs) for automated requirements generation to support requirements elicitation and specification; however, it remains unclear how to implement this effectively. In this work, we introduce ReqBrain, an Al-assisted tool that employs a fine-tuned LLM to generate authentic and adequate software requirements. Software engineers can engage with ReqBrain through chat-based sessions to automatically generate software requirements and categorize them by type. We curated a high-quality dataset of ISO 29148-compliant requirements and fine-tuned five 7B-parameter LLMs to determine the most effective base model for ReqBrain. The top-performing model, Zephyr-7b-beta, achieved 89.30\% Fl using the BERT score and a FRUGAL score of 91.20 in generating authentic and adequate requirements. Human evaluations further confirmed ReqBrain's effectiveness in generating requirements. Our findings suggest that generative Al, when fine-tuned, has the potential to improve requirements elicitation and specification, paving the way for future extensions into areas such as defect identification, test case generation, and agile user story creation.
Related papers
- Leveraging LLMs for Formal Software Requirements -- Challenges and Prospects [0.0]
VERIFAI1 aims to investigate automated and semi-automated approaches to bridge this gap.<n>This position paper presents a preliminary synthesis of relevant literature to identify recurring challenges and prospective research directions.
arXiv Detail & Related papers (2025-07-18T19:15:50Z) - Specification-Guided Repair of Arithmetic Errors in Dafny Programs using LLMs [84.30534714651093]
We present an innovative APR tool for Dafny, a verification-aware programming language.<n>We localize faults through a series of steps, which include using Hoare Logic to determine the state of each statement within the program.<n>We evaluate our approach using DafnyBench, a benchmark of real-world Dafny programs.
arXiv Detail & Related papers (2025-07-04T15:36:12Z) - Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios [51.46347732659174]
Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications.<n>AgentIF is the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios.
arXiv Detail & Related papers (2025-05-22T17:31:10Z) - Requirements-Driven Automated Software Testing: A Systematic Review [13.67495800498868]
This study synthesizes the current state of REDAST research, highlights trends, and proposes future directions.<n>This systematic literature review ( SLR) explores the landscape of REDAST by analyzing requirements input, transformation techniques, test outcomes, evaluation methods, and existing limitations.
arXiv Detail & Related papers (2025-02-25T23:13:09Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.<n>However, improvement is plateauing due to the exhaustion of readily available high-quality data.<n>We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - The Potential of LLMs in Automating Software Testing: From Generation to Reporting [0.0]
Manual testing, while effective, can be time consuming and costly, leading to an increased demand for automated methods.<n>Recent advancements in Large Language Models (LLMs) have significantly influenced software engineering.<n>This paper explores an agent-oriented approach to automated software testing, using LLMs to reduce human intervention and enhance testing efficiency.
arXiv Detail & Related papers (2024-12-31T02:06:46Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.<n>We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.<n>We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Requirements are All You Need: From Requirements to Code with LLMs [0.0]
Large language models (LLMs) can be applied to software engineering tasks.
This paper introduces a tailored LLM for automating the generation of code snippets from well-structured requirements documents.
We demonstrate the LLM's proficiency in comprehending intricate user requirements and producing robust design and code solutions.
arXiv Detail & Related papers (2024-06-14T14:57:35Z) - An approach for performance requirements verification and test
environments generation [1.359087929215203]
We conducted a systematic mapping study on model-based performance testing.
We studied natural language software requirements specifications in order to understand which and how performance requirements are typically specified.
Since none of the identified MBT techniques supported a major benefit of modeling, we developed the Performance Requirements verificatiOn and Test Environments generaTion approach.
arXiv Detail & Related papers (2024-02-29T19:59:26Z) - Towards Generating Executable Metamorphic Relations Using Large Language Models [46.26208489175692]
We propose an approach for automatically deriving executable MRs from requirements using large language models (LLMs)
To assess the feasibility of our approach, we conducted a questionnaire-based survey in collaboration with Siemens Industry Software.
arXiv Detail & Related papers (2024-01-30T13:52:47Z) - Privacy Adhering Machine Un-learning in NLP [66.17039929803933]
In real world industry use Machine Learning to build models on user data.
Such mandates require effort both in terms of data as well as model retraining.
continuous removal of data and model retraining steps do not scale.
We propose textitMachine Unlearning to tackle this challenge.
arXiv Detail & Related papers (2022-12-19T16:06:45Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.