Stereotype Detection in Natural Language Processing
- URL: http://arxiv.org/abs/2505.17642v1
- Date: Fri, 23 May 2025 09:03:56 GMT
- Title: Stereotype Detection in Natural Language Processing
- Authors: Alessandra Teresa Cignarella, Anastasia Giachanou, Els Lefever,
- Abstract summary: Stereotypes influence social perceptions and can escalate into discrimination and violence.<n>This work is presented a survey of existing research, analyzing definitions from psychology, sociology, and philosophy.<n>Findings emphasize stereotype detection as a potential early-monitoring tool to prevent bias escalation and the rise of hate speech.
- Score: 47.91542090964054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stereotypes influence social perceptions and can escalate into discrimination and violence. While NLP research has extensively addressed gender bias and hate speech, stereotype detection remains an emerging field with significant societal implications. In this work is presented a survey of existing research, analyzing definitions from psychology, sociology, and philosophy. A semi-automatic literature review was performed by using Semantic Scholar. We retrieved and filtered over 6,000 papers (in the year range 2000-2025), identifying key trends, methodologies, challenges and future directions. The findings emphasize stereotype detection as a potential early-monitoring tool to prevent bias escalation and the rise of hate speech. Conclusions highlight the need for a broader, multilingual, and intersectional approach in NLP studies.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - High Risk of Political Bias in Black Box Emotion Inference Models [0.0]
This paper investigates the presence of political bias in machine learning models used for sentiment analysis (SA) in social science research.
We conducted a bias audit on a Polish sentiment analysis model developed in our lab.
Our findings indicate that annotations by human raters propagate political biases into the model's predictions.
arXiv Detail & Related papers (2024-07-18T20:31:07Z) - A Multilingual Perspective on Probing Gender Bias [0.0]
Gender bias is a form of systematic negative treatment that targets individuals based on their gender.
This thesis investigates the nuances of how gender bias is expressed through language and within language technologies.
arXiv Detail & Related papers (2024-03-15T21:35:21Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
The study examines existing research on gender bias in AI language models and identifies gaps in the current knowledge.
The findings shed light on gendered word associations, language usage, and biased narratives present in the outputs of Large Language Models.
The paper presents strategies for reducing gender bias in LLMs, including algorithmic approaches and data augmentation techniques.
arXiv Detail & Related papers (2023-07-18T11:38:45Z) - Sociodemographic Bias in Language Models: A Survey and Forward Path [7.337228289111424]
Sociodemographic bias in language models (LMs) has the potential for harm when deployed in real-world settings.
This paper presents a comprehensive survey of the past decade of research on sociodemographic bias in LMs.
arXiv Detail & Related papers (2023-06-13T22:07:54Z) - A Group-Specific Approach to NLP for Hate Speech Detection [2.538209532048867]
We propose a group-specific approach to NLP for online hate speech detection.
We analyze historical data about discrimination against a protected group to better predict spikes in hate speech against that group.
We demonstrate this approach through a case study on NLP for detection of antisemitic hate speech.
arXiv Detail & Related papers (2023-04-21T19:08:49Z) - Handling Bias in Toxic Speech Detection: A Survey [26.176340438312376]
We look at proposed methods for evaluating and mitigating bias in toxic speech detection.
Case study introduces the concept of bias shift due to knowledge-based bias mitigation.
Survey concludes with an overview of the critical challenges, research gaps, and future directions.
arXiv Detail & Related papers (2022-01-26T10:38:36Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
Existing facial analysis systems have been shown to yield biased results against certain demographic subgroups.
It has become imperative to ensure that these systems do not discriminate based on gender, identity, or skin tone of individuals.
This has led to research in the identification and mitigation of bias in AI systems.
arXiv Detail & Related papers (2021-12-13T09:51:13Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z) - Towards Debiasing Sentence Representations [109.70181221796469]
We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks.
We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.
arXiv Detail & Related papers (2020-07-16T04:22:30Z) - A Framework for the Computational Linguistic Analysis of Dehumanization [52.735780962665814]
We analyze discussions of LGBTQ people in the New York Times from 1986 to 2015.
We find increasingly humanizing descriptions of LGBTQ people over time.
The ability to analyze dehumanizing language at a large scale has implications for automatically detecting and understanding media bias as well as abusive language online.
arXiv Detail & Related papers (2020-03-06T03:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.