Proto-FG3D: Prototype-based Interpretable Fine-Grained 3D Shape Classification
- URL: http://arxiv.org/abs/2505.17666v1
- Date: Fri, 23 May 2025 09:31:02 GMT
- Title: Proto-FG3D: Prototype-based Interpretable Fine-Grained 3D Shape Classification
- Authors: Shuxian Ma, Zihao Dong, Runmin Cong, Sam Kwong, Xiuli Shao,
- Abstract summary: We propose the first prototype-based framework named Proto-FG3D for fine-grained 3D shape classification.<n>Proto-FG3D establishes joint multi-view and multi-category representation learning via Prototype Association.<n>Proto-FG3D surpasses state-of-the-art methods in accuracy, transparent predictions, and ad-hoc interpretability with visualizations.
- Score: 59.68055837500357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based multi-view coarse-grained 3D shape classification has achieved remarkable success over the past decade, leveraging the powerful feature learning capabilities of CNN-based and ViT-based backbones. However, as a challenging research area critical for detailed shape understanding, fine-grained 3D classification remains understudied due to the limited discriminative information captured during multi-view feature aggregation, particularly for subtle inter-class variations, class imbalance, and inherent interpretability limitations of parametric model. To address these problems, we propose the first prototype-based framework named Proto-FG3D for fine-grained 3D shape classification, achieving a paradigm shift from parametric softmax to non-parametric prototype learning. Firstly, Proto-FG3D establishes joint multi-view and multi-category representation learning via Prototype Association. Secondly, prototypes are refined via Online Clustering, improving both the robustness of multi-view feature allocation and inter-subclass balance. Finally, prototype-guided supervised learning is established to enhance fine-grained discrimination via prototype-view correlation analysis and enables ad-hoc interpretability through transparent case-based reasoning. Experiments on FG3D and ModelNet40 show Proto-FG3D surpasses state-of-the-art methods in accuracy, transparent predictions, and ad-hoc interpretability with visualizations, challenging conventional fine-grained 3D recognition approaches.
Related papers
- UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting [64.31900521467362]
No existing pre-training method is equally effective for both object- and scene-level point clouds.<n>We introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture.
arXiv Detail & Related papers (2025-06-11T17:23:21Z) - Pts3D-LLM: Studying the Impact of Token Structure for 3D Scene Understanding With Large Language Models [9.658828841170472]
This work presents a rigorous study of 3D token structures, systematically comparing video-based and point-based representations.<n>We propose a novel approach that enriches visual tokens by incorporating 3D point cloud features from a Sonata pretrained Point Transformer V3 encoder.
arXiv Detail & Related papers (2025-06-06T02:35:26Z) - Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding [58.38294408121273]
We propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D.<n>Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties.
arXiv Detail & Related papers (2025-03-20T20:58:48Z) - CLAP: Unsupervised 3D Representation Learning for Fusion 3D Perception via Curvature Sampling and Prototype Learning [43.7594705101778]
We propose a joint unsupervised differentiable-rendering-based pre-training method for images and point clouds, termed CLAP.<n>Our method overcomes the computational hurdle by Curvature Sampling to select the more informative points/pixels for pre-training.<n>Experiments show that CLAP achieves up to 100% more performance gain as compared to previous SOTA pre-training methods.
arXiv Detail & Related papers (2024-12-04T06:26:12Z) - A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision [65.33043028101471]
We introduce a diffusion model for Gaussian Splats, SplatDiffusion, to enable generation of three-dimensional structures from single images.<n>Existing methods rely on deterministic, feed-forward predictions, which limit their ability to handle the inherent ambiguity of 3D inference from 2D data.
arXiv Detail & Related papers (2024-12-01T00:29:57Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.<n>We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection [21.96072831561483]
This paper proposes a novel Supervised Shape&Scale-perceptive Deformable Attention'' (S$3$-DA) module for monocular 3D object detection.
Benefiting from this, S$3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features.
Experiments on KITTI and Open datasets demonstrate that S$3$-DA significantly improves the detection accuracy.
arXiv Detail & Related papers (2023-09-02T12:36:38Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - Number-Adaptive Prototype Learning for 3D Point Cloud Semantic
Segmentation [46.610620464184926]
We propose to use an adaptive number of prototypes to dynamically describe the different point patterns within a semantic class.
Our method achieves 2.3% mIoU improvement over the baseline model based on the point-wise classification paradigm.
arXiv Detail & Related papers (2022-10-18T15:57:20Z) - Stereo Neural Vernier Caliper [57.187088191829886]
We propose a new object-centric framework for learning-based stereo 3D object detection.
We tackle a problem of how to predict a refined update given an initial 3D cuboid guess.
Our approach achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2022-03-21T14:36:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.