Activation Control for Efficiently Eliciting Long Chain-of-thought Ability of Language Models
- URL: http://arxiv.org/abs/2505.17697v1
- Date: Fri, 23 May 2025 10:07:18 GMT
- Title: Activation Control for Efficiently Eliciting Long Chain-of-thought Ability of Language Models
- Authors: Zekai Zhao, Qi Liu, Kun Zhou, Zihan Liu, Yifei Shao, Zhiting Hu, Biwei Huang,
- Abstract summary: We show that a small set of high-impact activations in the last few layers governs long-form reasoning attributes.<n>By simply amplifying these activations and inserting "wait" tokens, we can invoke the long CoT ability without any training.
- Score: 45.938663388013445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the remarkable reasoning performance, eliciting the long chain-of-thought (CoT) ability in large language models (LLMs) typically requires costly reinforcement learning or supervised fine-tuning on high-quality distilled data. We investigate the internal mechanisms behind this capability and show that a small set of high-impact activations in the last few layers largely governs long-form reasoning attributes, such as output length and self-reflection. By simply amplifying these activations and inserting "wait" tokens, we can invoke the long CoT ability without any training, resulting in significantly increased self-reflection rates and accuracy. Moreover, we find that the activation dynamics follow predictable trajectories, with a sharp rise after special tokens and a subsequent exponential decay. Building on these insights, we introduce a general training-free activation control technique. It leverages a few contrastive examples to identify key activations, and employs simple analytic functions to modulate their values at inference time to elicit long CoTs. Extensive experiments confirm the effectiveness of our method in efficiently eliciting long CoT reasoning in LLMs and improving their performance. Additionally, we propose a parameter-efficient fine-tuning method that trains only a last-layer activation amplification module and a few LoRA layers, outperforming full LoRA fine-tuning on reasoning benchmarks with significantly fewer parameters. Our code and data are publicly released.
Related papers
- Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control [18.273777938294327]
Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts.<n>We introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning.<n>We show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy.
arXiv Detail & Related papers (2025-06-25T06:29:18Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - Reasoning Under 1 Billion: Memory-Augmented Reinforcement Learning for Large Language Models [53.4530106173067]
Large language models (LLMs) with reinforcement learning (RL) have shown promising improvements in complex reasoning tasks.<n>RL remains challenging for tiny LLMs with 1 billion parameters or fewer because they lack the necessary pretraining strength to explore effectively.<n>This work introduces a novel intrinsic motivation approach that leverages episodic memory to address this challenge.
arXiv Detail & Related papers (2025-04-03T04:46:17Z) - Sparsing Law: Towards Large Language Models with Greater Activation Sparsity [62.09617609556697]
Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated.<n>We propose PPL-$p%$ sparsity, a precise and performance-aware activation sparsity metric.<n>We show that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity.
arXiv Detail & Related papers (2024-11-04T17:59:04Z) - CHESS: Optimizing LLM Inference via Channel-Wise Thresholding and Selective Sparsification [7.8430836312711465]
This paper reformulates the activation sparsification problem to explicitly capture the relationship between activation sparsity and model performance.<n>We propose CHESS, a general activation sparsification approach via CHannel-wise thrEsholding and Selective Sparsification.<n> Experimental results demonstrate that the proposed CHESS achieves lower performance degradation over eight downstream tasks while activating fewer parameters than existing methods.
arXiv Detail & Related papers (2024-09-02T16:41:44Z) - First Activations Matter: Training-Free Methods for Dynamic Activation in Large Language Models [25.15698344467722]
This paper introduces a training-free Threshold-based Dynamic Activation method that leverage sequence information to exploit the inherent sparsity of models across various architectures.
We theoretically analyze two of its critical features: history-related activation uncertainty and semantic-irrelevant activation inertia.
arXiv Detail & Related papers (2024-08-21T07:38:51Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.