Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand
- URL: http://arxiv.org/abs/2505.17738v1
- Date: Fri, 23 May 2025 11:02:34 GMT
- Title: Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand
- Authors: Fengyi Wang, Xiangyu Fu, Nitish Thakor, Gordon Cheng,
- Abstract summary: Proprioception plays a vital role in perceiving the 3D structure of objects.<n>Proprioception is relatively unexplored in an artificial system.<n>We introduce a novel platform that integrates a soft anthropomorphic robot hand.
- Score: 5.159808922904934
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Proprioception, a key sensory modality in haptic perception, plays a vital role in perceiving the 3D structure of objects by providing feedback on the position and movement of body parts. The restoration of proprioceptive sensation is crucial for enabling in-hand manipulation and natural control in the prosthetic hand. Despite its importance, proprioceptive sensation is relatively unexplored in an artificial system. In this work, we introduce a novel platform that integrates a soft anthropomorphic robot hand (QB SoftHand) with flexible proprioceptive sensors and a classifier that utilizes a hybrid spiking neural network with different types of spiking neurons to interpret neuromorphic proprioceptive signals encoded by a biological muscle spindle model. The encoding scheme and the classifier are implemented and tested on the datasets we collected in the active exploration of ten objects from the YCB benchmark. Our results indicate that the classifier achieves more accurate inferences than existing learning approaches, especially in the early stage of the exploration. This system holds the potential for development in the areas of haptic feedback and neural prosthetics.
Related papers
- Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain [2.2923726517351044]
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to vision and language.<n>We introduce a novelAttender-Decoder (EAD) framework to explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences.<n>We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization.
arXiv Detail & Related papers (2025-05-23T20:40:28Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.<n>We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.<n>We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - A Fuzzy-based Approach to Predict Human Interaction by Functional Near-Infrared Spectroscopy [25.185426359719454]
The paper introduces a Fuzzy-based Attention (Fuzzy Attention Layer) mechanism, a novel computational approach to interpretability and efficacy of neural models in psychological research.<n>By leveraging fuzzy logic, the Fuzzy Attention Layer is capable of learning and identifying interpretable patterns of neural activity.
arXiv Detail & Related papers (2024-09-26T09:20:12Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Bayesian and Neural Inference on LSTM-based Object Recognition from
Tactile and Kinesthetic Information [0.0]
Haptic perception encompasses the sensing modalities encountered in the sense of touch (e.g., tactile and kinesthetic sensations)
This letter focuses on multimodal object recognition and proposes analytical and data-driven methodologies to fuse tactile- and kinesthetic-based classification results.
arXiv Detail & Related papers (2023-06-10T12:29:23Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Learnable latent embeddings for joint behavioral and neural analysis [3.6062449190184136]
We show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.
We validate its accuracy and demonstrate its utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species.
arXiv Detail & Related papers (2022-04-01T19:19:33Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - A Portable, Self-Contained Neuroprosthetic Hand with Deep Learning-Based
Finger Control [18.09497225404653]
We present the implementation of a neuroprosthetic hand with embedded deep learning-based control.
The neural decoder is designed based on the recurrent neural network (RNN) architecture and deployed on the NVIDIA Jetson Nano.
This enables the implementation of the neuroprosthetic hand as a portable and self-contained unit with real-time control of individual finger movements.
arXiv Detail & Related papers (2021-03-24T19:11:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.