Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
- URL: http://arxiv.org/abs/2505.18361v3
- Date: Sat, 31 May 2025 03:47:37 GMT
- Title: Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
- Authors: Trinity Chung, Yuchen Shen, Nathan C. L. Kong, Aran Nayebi,
- Abstract summary: Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to vision and language.<n>We introduce a novelAttender-Decoder (EAD) framework to explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences.<n>We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization.
- Score: 2.2923726517351044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
Related papers
- Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand [5.159808922904934]
Proprioception plays a vital role in perceiving the 3D structure of objects.<n>Proprioception is relatively unexplored in an artificial system.<n>We introduce a novel platform that integrates a soft anthropomorphic robot hand.
arXiv Detail & Related papers (2025-05-23T11:02:34Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.<n>We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.<n>We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking Neural Networks for Frame-based and Event-based Single Object
Localization [26.51843464087218]
Spiking neural networks have shown much promise as an energy-efficient alternative to artificial neural networks.
We propose a spiking neural network approach for single object localization trained using surrogate gradient descent.
We compare our method with similar artificial neural networks and show that our model has competitive/better performance in accuracy, against various corruptions, and has lower energy consumption.
arXiv Detail & Related papers (2022-06-13T22:22:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
Spiking neural networks are a promising approach towards next-generation models of the brain in computational neuroscience.
We apply end-to-end learning with membrane potential-based backpropagation to a spiking convolutional auto-encoder.
We show that applying regularization on membrane potential and spiking output successfully avoids both dead and bursting neurons.
arXiv Detail & Related papers (2021-09-22T21:27:40Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
We propose a novel biologically inspired for artificial (ANNs) and spiking neural networks (SNNs)
GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network.
We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs.
arXiv Detail & Related papers (2021-04-23T13:50:30Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats.
Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior.
arXiv Detail & Related papers (2021-02-25T02:13:52Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.