論文の概要: C-LoRA: Contextual Low-Rank Adaptation for Uncertainty Estimation in Large Language Models
- arxiv url: http://arxiv.org/abs/2505.17773v2
- Date: Wed, 28 May 2025 14:57:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 15:04:28.071889
- Title: C-LoRA: Contextual Low-Rank Adaptation for Uncertainty Estimation in Large Language Models
- Title(参考訳): C-LoRA:大規模言語モデルにおける不確実性推定のための文脈的低ランク適応
- Authors: Amir Hossein Rahmati, Sanket Jantre, Weifeng Zhang, Yucheng Wang, Byung-Jun Yoon, Nathan M. Urban, Xiaoning Qian,
- Abstract要約: Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整するためのコスト効率の良いソリューションを提供する。
LoRAは、データスカースな数ショット設定で過信な予測を生成する。
本研究では,新しい不確実性を認識し,パラメータを効率的に調整する手法として,コンテキスト低ランク適応(textbfC-LoRA)を提案する。
- 参考スコア(独自算出の注目度): 16.30304620457414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) offers a cost-effective solution for fine-tuning large language models (LLMs), but it often produces overconfident predictions in data-scarce few-shot settings. To address this issue, several classical statistical learning approaches have been repurposed for scalable uncertainty-aware LoRA fine-tuning. However, these approaches neglect how input characteristics affect the predictive uncertainty estimates. To address this limitation, we propose Contextual Low-Rank Adaptation (\textbf{C-LoRA}) as a novel uncertainty-aware and parameter efficient fine-tuning approach, by developing new lightweight LoRA modules contextualized to each input data sample to dynamically adapt uncertainty estimates. Incorporating data-driven contexts into the parameter posteriors, C-LoRA mitigates overfitting, achieves well-calibrated uncertainties, and yields robust predictions. Extensive experiments demonstrate that C-LoRA consistently outperforms the state-of-the-art uncertainty-aware LoRA methods in both uncertainty quantification and model generalization. Ablation studies further confirm the critical role of our contextual modules in capturing sample-specific uncertainties. C-LoRA sets a new standard for robust, uncertainty-aware LLM fine-tuning in few-shot regimes.
- Abstract(参考訳): Low-Rank Adaptation (LoRA) は,大規模言語モデル(LLM)を微調整する上で,コスト効率のよいソリューションを提供する。
この問題に対処するために、スケーラブルな不確実性を考慮したLoRA微調整のために、いくつかの古典的な統計的学習アプローチが再利用されている。
しかし、これらの手法は、入力特性が予測不確実性推定にどのように影響するかを無視する。
この制限に対処するため、各入力データにコンテキスト適応した新しい軽量LORAモジュールを開発し、新しい不確実性認識およびパラメータ最適化手法としてコンテキスト低ランク適応(\textbf{C-LoRA})を提案する。
データ駆動コンテキストをパラメータ後部に取り込むことで、C-LoRAは過度な適合を緩和し、よく校正された不確実性を達成し、堅牢な予測をもたらす。
大規模な実験により、C-LoRAは不確かさの定量化とモデル一般化の両方において、最先端の不確実性を意識したLoRA法よりも一貫して優れていることが示された。
アブレーション研究は、サンプル固有の不確かさを捉える上で、文脈モジュールが重要な役割を担っていることをさらに確認する。
C-LoRAは、数発のレギュレーションにおいて、堅牢で不確実性を意識したLLM微調整のための新しい標準を定めている。
関連論文リスト
- Token-Level Uncertainty Estimation for Large Language Model Reasoning [24.56760223952017]
大きな言語モデル(LLM)は印象的な機能を示していますが、その出力品質はさまざまなアプリケーションシナリオで相容れないままです。
本稿では, LLMの自己評価と, 数学的推論における生成品質の自己向上を可能にするトークンレベルの不確実性推定フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-16T22:47:32Z) - Minimal Ranks, Maximum Confidence: Parameter-efficient Uncertainty Quantification for LoRA [7.6400146954285315]
Low-Rank Adaptation (LoRA)は、重み更新を低ランク行列に分解することで、大きな言語モデルのパラメータ効率の良い微調整を可能にする。
超低次元パラメータ空間において有効な不確実性定量化が達成可能であることを示す新しいパラメータ効率のベイズロラを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:46:29Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、シーケンシャルなタスクに取り組むための事前トレーニング中に得られた豊富な知識を活用するための有望なパラダイムとして現れてきた。
既存のプロンプトベースおよびローランク適応ベース(LoRAベース)メソッドでは、プロンプト/ローラプールの拡張や、以前のタスクのサンプルの保持がしばしば必要である。
クラスインクリメンタル学習のためのスケーラブルデカップリングLoRA(SD-LoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
IncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)について紹介する。
我々は、SNR(Signal-to-Noise Ratio)ベースのスパン不確実性を用いて、テキストチャンク間の類似性を推定する。
不確かさRAGはLLaMA-2-7Bでベースラインを2.03%上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-10-03T17:39:38Z) - Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks [16.064233621959538]
我々は,textbfRe-levertextbfA を直接 textbfRe-levertextbfA を用いて mtextbfItigate the error in textbfDifficulty calibration を提案する。
論文 参考訳(メタデータ) (2024-08-31T11:59:42Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
言語モデル(LM)の最近の進歩により、複雑なNLPタスクの品質が大幅に向上した。
Cascadingは、より好ましいコスト品質のトレードオフを達成するためのシンプルな戦略を提供する。
トークンレベルの不確実性を学習後遅延ルールに組み込むことで,単純な集約戦略を著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-04-15T21:02:48Z) - Investigating Training Strategies and Model Robustness of Low-Rank
Adaptation for Language Modeling in Speech Recognition [27.515920408920216]
フリーズドプレトレーニング言語モデル(PLM)を用いたローランク適応(LoRA)は、メモリ制約ハードウェアのための資源効率の高いモデリング手法である。
本研究では,様々なLoRAトレーニング戦略を導入することにより,モデル性能を向上させる方法について検討する。
LoRAに基づく第2パス音声認識モデルの安定性をさらに評価するため,入力摂動に対する検討を行った。
論文 参考訳(メタデータ) (2024-01-19T01:30:16Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。