Sec5GLoc: Securing 5G Indoor Localization via Adversary-Resilient Deep Learning Architecture
- URL: http://arxiv.org/abs/2505.17776v1
- Date: Fri, 23 May 2025 11:46:11 GMT
- Title: Sec5GLoc: Securing 5G Indoor Localization via Adversary-Resilient Deep Learning Architecture
- Authors: Ildi Alla, Valeria Loscri,
- Abstract summary: 5G millimeter-wave and sub-6 GHz networks enable high-accuracy indoor localization, but security and privacy vulnerabilities pose serious challenges.<n>We formalize a threat model encompassing attackers who inject forged radio signals or perturb channel measurements to mislead the localization system.<n>We propose an adversary-resilient localization architecture that combines deep learning fingerprinting with physical domain knowledge.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emerging 5G millimeter-wave and sub-6 GHz networks enable high-accuracy indoor localization, but security and privacy vulnerabilities pose serious challenges. In this paper, we identify and address threats including location spoofing and adversarial signal manipulation against 5G-based indoor localization. We formalize a threat model encompassing attackers who inject forged radio signals or perturb channel measurements to mislead the localization system. To defend against these threats, we propose an adversary-resilient localization architecture that combines deep learning fingerprinting with physical domain knowledge. Our approach integrates multi-anchor Channel Impulse Response (CIR) fingerprints with Time Difference of Arrival (TDoA) features and known anchor positions in a hybrid Convolutional Neural Network (CNN) and multi-head attention network. This design inherently checks geometric consistency and dynamically down-weights anomalous signals, making localization robust to tampering. We formulate the secure localization problem and demonstrate, through extensive experiments on a public 5G indoor dataset, that the proposed system achieves a mean error approximately 0.58 m under mixed Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) trajectories in benign conditions and gracefully degrades to around 0.81 m under attack scenarios. We also show via ablation studies that each architecture component (attention mechanism, TDoA, etc.) is critical for both accuracy and resilience, reducing errors by 4-5 times compared to baselines. In addition, our system runs in real-time, localizing the user in just 1 ms on a simple CPU. The code has been released to ensure reproducibility (https://github.com/sec5gloc/Sec5GLoc).
Related papers
- GATE: Graph Attention Neural Networks with Real-Time Edge Construction for Robust Indoor Localization using Mobile Embedded Devices [3.3379026542599934]
We present GATE, a novel framework that constructs an adaptive graph representation of fingerprint vectors while preserving an indoor state-space topology.<n>Gate achieves 1.6x to 4.72x lower mean localization errors and 1.85x to 4.57x lower worst-case errors compared to state-of-the-art indoor localization frameworks.
arXiv Detail & Related papers (2025-07-15T07:37:33Z) - NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments [56.35569661650558]
We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation.<n>Rather than constructing a global map, NOVA formulates perception, estimation, and control entirely in the target's reference frame.<n>We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss.
arXiv Detail & Related papers (2025-06-23T14:28:30Z) - Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5G offers advanced services, supporting applications such as intelligent transportation, connected healthcare, and smart cities within the Internet of Things (IoT)
These advancements introduce significant security challenges, with increasingly sophisticated cyber-attacks.
This paper proposes a robust intrusion detection system (IDS) using federated learning and large language models (LLMs)
arXiv Detail & Related papers (2024-09-28T15:56:28Z) - System-level Analysis of Adversarial Attacks and Defenses on Intelligence in O-RAN based Cellular Networks [2.1824191810542666]
We conduct a thorough system-level investigation of cyber threats within the Open Radio Access Network technology.
We focus on machine learning (ML) intelligence components known as xApps within the O-RAN's near-real-time RAN Intelligent Controller (near-RT RIC) platform.
Our study begins by developing a malicious xApp designed to execute adversarial attacks on two types of test data.
To mitigate these threats, we utilize a distillation technique that involves training a teacher model at a high softmax temperature and transferring its knowledge to a student model trained at a lower softmax temperature.
arXiv Detail & Related papers (2024-02-10T00:26:44Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - CALLOC: Curriculum Adversarial Learning for Secure and Robust Indoor
Localization [3.943289808718775]
We introduce CALLOC, a novel framework designed to resist adversarial attacks and variations across indoor environments and devices.
CALLOC employs a novel adaptive curriculum learning approach with a domain specific lightweight scaled-dot product attention neural network.
We show that CALLOC can achieve improvements of up to 6.03x in mean error and 4.6x in worst-case error against state-of-the-art indoor localization frameworks.
arXiv Detail & Related papers (2023-11-10T19:26:31Z) - Deep Attention Recognition for Attack Identification in 5G UAV
scenarios: Novel Architecture and End-to-End Evaluation [3.3253720226707992]
Despite the robust security features inherent in the 5G framework, attackers will still discover ways to disrupt 5G unmanned aerial vehicle (UAV) operations.
We propose Deep Attention Recognition (DAtR) as a solution to identify attacks based on a small deep network embedded in authenticated UAVs.
arXiv Detail & Related papers (2023-03-03T17:10:35Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
We propose a novel generative adversarial network (GAN)-based countermeasure approach.
GAN-based aims to eliminate the adversarial attack examples before feeding to the DNN-based classifier.
Simulation results show the effectiveness of our proposed defense GAN so that it could enhance the accuracy of the DNN-based AMC under adversarial attacks to 81%, approximately.
arXiv Detail & Related papers (2022-05-29T22:30:32Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
indoor localization is a fundamental problem in location-based applications.
We propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization.
GLN makes location predictions based on robust location representations extracted from images through message-passing networks.
We introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version.
arXiv Detail & Related papers (2020-08-06T07:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.