System-level Analysis of Adversarial Attacks and Defenses on Intelligence in O-RAN based Cellular Networks
- URL: http://arxiv.org/abs/2402.06846v2
- Date: Tue, 13 Feb 2024 16:54:48 GMT
- Title: System-level Analysis of Adversarial Attacks and Defenses on Intelligence in O-RAN based Cellular Networks
- Authors: Azuka Chiejina, Brian Kim, Kaushik Chowhdury, Vijay K. Shah,
- Abstract summary: We conduct a thorough system-level investigation of cyber threats within the Open Radio Access Network technology.
We focus on machine learning (ML) intelligence components known as xApps within the O-RAN's near-real-time RAN Intelligent Controller (near-RT RIC) platform.
Our study begins by developing a malicious xApp designed to execute adversarial attacks on two types of test data.
To mitigate these threats, we utilize a distillation technique that involves training a teacher model at a high softmax temperature and transferring its knowledge to a student model trained at a lower softmax temperature.
- Score: 2.1824191810542666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the open architecture, open interfaces, and integration of intelligence within Open Radio Access Network technology hold the promise of transforming 5G and 6G networks, they also introduce cybersecurity vulnerabilities that hinder its widespread adoption. In this paper, we conduct a thorough system-level investigation of cyber threats, with a specific focus on machine learning (ML) intelligence components known as xApps within the O-RAN's near-real-time RAN Intelligent Controller (near-RT RIC) platform. Our study begins by developing a malicious xApp designed to execute adversarial attacks on two types of test data - spectrograms and key performance metrics (KPMs), stored in the RIC database within the near-RT RIC. To mitigate these threats, we utilize a distillation technique that involves training a teacher model at a high softmax temperature and transferring its knowledge to a student model trained at a lower softmax temperature, which is deployed as the robust ML model within xApp. We prototype an over-the-air LTE/5G O-RAN testbed to assess the impact of these attacks and the effectiveness of the distillation defense technique by leveraging an ML-based Interference Classification (InterClass) xApp as an example. We examine two versions of InterClass xApp under distinct scenarios, one based on Convolutional Neural Networks (CNNs) and another based on Deep Neural Networks (DNNs) using spectrograms and KPMs as input data respectively. Our findings reveal up to 100% and 96.3% degradation in the accuracy of both the CNN and DNN models respectively resulting in a significant decline in network performance under considered adversarial attacks. Under the strict latency constraints of the near-RT RIC closed control loop, our analysis shows that the distillation technique outperforms classical adversarial training by achieving an accuracy of up to 98.3% for mitigating such attacks.
Related papers
- Enhancing O-RAN Security: Evasion Attacks and Robust Defenses for Graph Reinforcement Learning-based Connection Management [5.791956438741676]
We study various attacks and defenses on machine learning (ML) models in Open Radio Access Networks (O-RAN)
A comprehensive modeling of the security threats and the demonstration of adversarial attacks and defenses is still in its nascent stages.
We develop and demonstrate robust training-based defenses against the challenging physical/jamming-based attacks and show a 15% improvement in the coverage rates when compared to employing no defense over a range of noise budgets.
arXiv Detail & Related papers (2024-05-06T22:27:24Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
False data injection attack (FDIA) is one of the classes of attacks that target the smart measurement devices by injecting malicious data.
We propose a federated learning-based scheme combined with a hybrid deep neural network architecture.
We validate the proposed architecture by extensive simulations on the IEEE 57, 118, and 300 bus systems and real electricity load data.
arXiv Detail & Related papers (2023-06-17T20:29:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - A New Deep Boosted CNN and Ensemble Learning based IoT Malware Detection [0.0]
Security issues are threatened in various types of networks, especially in the Internet of Things (IoT) environment.
We have developed a new malware detection framework, Deep Squeezed-Boosted and Ensemble Learning (DSBEL), comprised of novel Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNN and ensemble learning.
arXiv Detail & Related papers (2022-12-15T18:14:51Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
False data injection attacks (FDIAs) pose a significant security threat to power system state estimation.
Recent studies have proposed machine learning (ML) techniques, particularly deep neural networks (DNNs)
arXiv Detail & Related papers (2021-02-17T22:26:34Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.