EXECUTE: A Multilingual Benchmark for LLM Token Understanding
- URL: http://arxiv.org/abs/2505.17784v1
- Date: Fri, 23 May 2025 11:56:48 GMT
- Title: EXECUTE: A Multilingual Benchmark for LLM Token Understanding
- Authors: Lukas Edman, Helmut Schmid, Alexander Fraser,
- Abstract summary: Tests across multiple languages reveal that challenges in other languages are not always on the character level as in English.<n>We also examine sub-character tasks in Chinese, Japanese, and Korean to assess LLMs' understanding of character components.
- Score: 54.70665106141121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The CUTE benchmark showed that LLMs struggle with character understanding in English. We extend it to more languages with diverse scripts and writing systems, introducing EXECUTE. Our simplified framework allows easy expansion to any language. Tests across multiple LLMs reveal that challenges in other languages are not always on the character level as in English. Some languages show word-level processing issues, some show no issues at all. We also examine sub-character tasks in Chinese, Japanese, and Korean to assess LLMs' understanding of character components.
Related papers
- Polishing Every Facet of the GEM: Testing Linguistic Competence of LLMs and Humans in Korean [8.072947878765941]
KoGEM is designed to assess the linguistic competence of LLMs and humans in Korean.<n>It consists of 1.5k multiple-choice QA pairs covering five main categories and 16 subcategories.
arXiv Detail & Related papers (2025-06-02T01:27:46Z) - PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts [79.84059473102778]
PolyMath is a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels.<n>Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation.
arXiv Detail & Related papers (2025-04-25T15:39:04Z) - CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks.
This raises the question: To what extent can LLMs learn orthographic information?
We propose a new benchmark, which features a collection of tasks designed to test the orthographic knowledge of LLMs.
arXiv Detail & Related papers (2024-09-23T18:27:03Z) - LLMs' Understanding of Natural Language Revealed [0.0]
Large language models (LLMs) are the result of a massive experiment in bottom-up, data-driven reverse engineering of language at scale.
We will focus on testing LLMs for their language understanding capabilities, their supposed forte.
arXiv Detail & Related papers (2024-07-29T01:21:11Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.<n>We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.<n>We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Parrot: Multilingual Visual Instruction Tuning [66.65963606552839]
Existing methods typically align vision encoders with Multimodal Large Language Models (MLLMs) via supervised fine-tuning (SFT)<n>We propose PARROT, a novel approach that leverages textual guidance for visual token alignment at the language level.<n>We introduce the Massive Multilingual Multimodal Benchmark (MMMB), a new benchmark comprising 6 languages, 15 categories, and 12,000 questions.
arXiv Detail & Related papers (2024-06-04T17:56:28Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
Large Language Models (LLMs) often show strong performance on English tasks, while exhibiting limitations on other languages.
This study endeavors to examine the multilingual capability of LLMs from the vocabulary sharing perspective.
arXiv Detail & Related papers (2023-11-15T16:13:14Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
Large-scale Pretrained Language Models (LLMs) have shown strong abilities in multilingual translations.
We present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation.
arXiv Detail & Related papers (2023-05-24T12:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.