Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
- URL: http://arxiv.org/abs/2505.17881v1
- Date: Fri, 23 May 2025 13:31:13 GMT
- Title: Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
- Authors: Wenjin Qin, Hailin Wang, Hao Shu, Feng Zhang, Jianjun Wang, Xiangyong Cao, Xi-Le Zhao, Gemine Vivone,
- Abstract summary: We present HAD-EUNTRFR, which incorporates an enhanced unified non-spectral framework (TR) regularization factors.<n>Our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of terms terms terms accuracy.
- Score: 29.080180491898805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, tensor decomposition-based approaches for hyperspectral anomaly detection (HAD) have gained significant attention in the field of remote sensing. However, existing methods often fail to fully leverage both the global correlations and local smoothness of the background components in hyperspectral images (HSIs), which exist in both the spectral and spatial domains. This limitation results in suboptimal detection performance. To mitigate this critical issue, we put forward a novel HAD method named HAD-EUNTRFR, which incorporates an enhanced unified nonconvex tensor ring (TR) factors regularization. In the HAD-EUNTRFR framework, the raw HSIs are first decomposed into background and anomaly components. The TR decomposition is then employed to capture the spatial-spectral correlations within the background component. Additionally, we introduce a unified and efficient nonconvex regularizer, induced by tensor singular value decomposition (TSVD), to simultaneously encode the low-rankness and sparsity of the 3-D gradient TR factors into a unique concise form. The above characterization scheme enables the interpretable gradient TR factors to inherit the low-rankness and smoothness of the original background. To further enhance anomaly detection, we design a generalized nonconvex regularization term to exploit the group sparsity of the anomaly component. To solve the resulting doubly nonconvex model, we develop a highly efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) framework. Experimental results on several benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of detection accuracy.
Related papers
- Spectral-Spatial Extraction through Layered Tensor Decomposition for Hyperspectral Anomaly Detection [6.292153194561472]
Low rank tensor representation (LRTR) methods are very useful for hyperspectral anomaly detection (HAD)<n>We first apply non-negative matrix factorization (NMF) to alleviate spectral dimensionality redundancy and extract spectral anomaly.<n>We then employ LRTR to extract spatial anomaly while mitigating spatial redundancy, yielding a highly efffcient layered tensor decomposition framework for HAD.<n> Experimental results on the Airport-Beach-Urban and MVTec datasets demonstrate that our approach outperforms state-of-the-art methods in the HAD task.
arXiv Detail & Related papers (2025-03-07T07:08:14Z) - Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
Spectral variations pose a common challenge in analyzing hyperspectral images (HSI)<n>Low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data.<n>We propose a novel model for irregular tensor lowrank representation tailored to efficiently model irregular 3D cubes.
arXiv Detail & Related papers (2024-10-24T02:56:22Z) - Hyperspectral Anomaly Detection with Self-Supervised Anomaly Prior [29.233195935103172]
We propose a self-supervised network called self-supervised anomaly prior (SAP) for hyperspectral anomaly detection.
SAP offers a more accurate and interpretable solution than other advanced HAD methods.
In addition, a dual-purified strategy is proposed to provide a more refined background representation with an enriched background dictionary.
arXiv Detail & Related papers (2024-04-20T10:40:12Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Hyperspectral Image Fusion via Logarithmic Low-rank Tensor Ring
Decomposition [26.76968345244154]
We study the low-rankness of TR factors from the TNN perspective and consider the mode-2 logarithmic TNN (LTNN) on each TR factor.
A novel fusion model is proposed by incorporating this LTNN regularization and the weighted total variation.
arXiv Detail & Related papers (2023-10-16T04:02:34Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - Infrared small target detection based on isotropic constraint under
complex background [10.091959130890956]
Low signal-to-clutter ratio (SCR) of target and the interference caused by irregular background clutter make it difficult to get an accurate result.
We propose a multilayer gray difference (MGD) method constrained by isotropy.
Experiments show that the proposed method is effective and superior to several common methods in terms of signal-to-clutter ratio gain (SCRG) and receiver operating characteristic (ROC) curve.
arXiv Detail & Related papers (2020-11-24T12:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.