Hyperspectral Anomaly Detection with Self-Supervised Anomaly Prior
- URL: http://arxiv.org/abs/2404.13342v1
- Date: Sat, 20 Apr 2024 10:40:12 GMT
- Title: Hyperspectral Anomaly Detection with Self-Supervised Anomaly Prior
- Authors: Yidan Liu, Weiying Xie, Kai Jiang, Jiaqing Zhang, Yunsong Li, Leyuan Fang,
- Abstract summary: We propose a self-supervised network called self-supervised anomaly prior (SAP) for hyperspectral anomaly detection.
SAP offers a more accurate and interpretable solution than other advanced HAD methods.
In addition, a dual-purified strategy is proposed to provide a more refined background representation with an enriched background dictionary.
- Score: 29.233195935103172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The majority of existing hyperspectral anomaly detection (HAD) methods use the low-rank representation (LRR) model to separate the background and anomaly components, where the anomaly component is optimized by handcrafted sparse priors (e.g., $\ell_{2,1}$-norm). However, this may not be ideal since they overlook the spatial structure present in anomalies and make the detection result largely dependent on manually set sparsity. To tackle these problems, we redefine the optimization criterion for the anomaly component in the LRR model with a self-supervised network called self-supervised anomaly prior (SAP). This prior is obtained by the pretext task of self-supervised learning, which is customized to learn the characteristics of hyperspectral anomalies. Specifically, this pretext task is a classification task to distinguish the original hyperspectral image (HSI) and the pseudo-anomaly HSI, where the pseudo-anomaly is generated from the original HSI and designed as a prism with arbitrary polygon bases and arbitrary spectral bands. In addition, a dual-purified strategy is proposed to provide a more refined background representation with an enriched background dictionary, facilitating the separation of anomalies from complex backgrounds. Extensive experiments on various hyperspectral datasets demonstrate that the proposed SAP offers a more accurate and interpretable solution than other advanced HAD methods.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Open-Set Graph Anomaly Detection via Normal Structure Regularisation [30.638274744518682]
Open-set Graph Anomaly Detection (GAD) aims to train a detection model using a small number of normal and anomaly nodes.
Current supervised GAD methods tend to over-emphasise fitting the seen anomalies, leading to many errors of detecting the unseen anomalies as normal nodes.
We propose a novel open-set GAD approach, namely normal structure regularisation (NSReg), to achieve generalised detection ability to unseen anomalies.
arXiv Detail & Related papers (2023-11-12T13:25:28Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Nonnegative-Constrained Joint Collaborative Representation with Union
Dictionary for Hyperspectral Anomaly Detection [14.721615285883429]
collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection.
CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residuals.
This paper proposes a nonnegative-constrained joint collaborative representation model for the hyperspectral anomaly detection task.
arXiv Detail & Related papers (2022-03-18T16:02:27Z) - DR{\AE}M -- A discriminatively trained reconstruction embedding for
surface anomaly detection [14.234783431842542]
We propose a discriminatively trained reconstruction anomaly embedding model (DRAEM)
DRAEM learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples.
On the challenging MVTec anomaly detection dataset, DRAEM outperforms the current state-of-the-art unsupervised methods by a large margin.
arXiv Detail & Related papers (2021-08-17T13:17:29Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.