KITINet: Kinetics Theory Inspired Network Architectures with PDE Simulation Approaches
- URL: http://arxiv.org/abs/2505.17919v1
- Date: Fri, 23 May 2025 13:58:29 GMT
- Title: KITINet: Kinetics Theory Inspired Network Architectures with PDE Simulation Approaches
- Authors: Mingquan Feng, Yifan Fu, Tongcheng Zhang, Yu Jiang, Yixin Huang, Junchi Yan,
- Abstract summary: This paper introduces KITINet, a novel architecture that reinterprets feature propagation through the lens of non-equilibrium particle dynamics.<n>At its core, we propose a residual module that models update as the evolution of a particle system.<n>This formulation mimics particle collisions and energy exchange, enabling adaptive feature refinement via physics-informed interactions.
- Score: 43.872190335490515
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the widely recognized success of residual connections in modern neural networks, their design principles remain largely heuristic. This paper introduces KITINet (Kinetics Theory Inspired Network), a novel architecture that reinterprets feature propagation through the lens of non-equilibrium particle dynamics and partial differential equation (PDE) simulation. At its core, we propose a residual module that models feature updates as the stochastic evolution of a particle system, numerically simulated via a discretized solver for the Boltzmann transport equation (BTE). This formulation mimics particle collisions and energy exchange, enabling adaptive feature refinement via physics-informed interactions. Additionally, we reveal that this mechanism induces network parameter condensation during training, where parameters progressively concentrate into a sparse subset of dominant channels. Experiments on scientific computation (PDE operator), image classification (CIFAR-10/100), and text classification (IMDb/SNLI) show consistent improvements over classic network baselines, with negligible increase of FLOPs.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
This paper introduces KO, a novel neural gradient inspired by kinetic theory and partial differential equation (PDE) simulations.<n>We reimagine the dynamics of network parameters as the evolution of a particle system governed by kinetic principles.<n>This physics-driven approach inherently promotes parameter diversity during optimization, mitigating the phenomenon of parameter condensation.
arXiv Detail & Related papers (2025-05-20T18:00:01Z) - A Physics-Informed Convolutional Long Short Term Memory Statistical Model for Fluid Thermodynamics Simulations [0.0]
Direct numerical simulations of fluid thermodynamics are computationally prohibitive.<n>We present a physics-informed architecture for RBC, a canonical example of convective flow.<n>Inference is penalized with respect to the governing partial differential equations to ensure interpretability.
arXiv Detail & Related papers (2025-05-16T06:47:00Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
We present a RNN model based on convolutional neural networks for modeling the nonlinear non-adiabatic dynamics of hybrid quantum-classical systems.<n> validation studies show that the trained PARC model could reproduce the space-time evolution of a one-dimensional semi-classical Holstein model.
arXiv Detail & Related papers (2024-12-09T16:23:25Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
We generalize the idea of conditional parametrization -- using trainable functions of input parameters.
We show that conditionally parameterized networks provide superior performance compared to their traditional counterparts.
A network architecture named CP-GNet is also proposed as the first deep learning model capable of reacting standalone prediction of flows on meshes.
arXiv Detail & Related papers (2021-09-15T20:21:13Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.