A Physics-Informed Convolutional Long Short Term Memory Statistical Model for Fluid Thermodynamics Simulations
- URL: http://arxiv.org/abs/2505.10919v1
- Date: Fri, 16 May 2025 06:47:00 GMT
- Title: A Physics-Informed Convolutional Long Short Term Memory Statistical Model for Fluid Thermodynamics Simulations
- Authors: Luca Menicali, Andrew Grace, David H. Richter, Stefano Castruccio,
- Abstract summary: Direct numerical simulations of fluid thermodynamics are computationally prohibitive.<n>We present a physics-informed architecture for RBC, a canonical example of convective flow.<n>Inference is penalized with respect to the governing partial differential equations to ensure interpretability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluid thermodynamics underpins atmospheric dynamics, climate science, industrial applications, and energy systems. However, direct numerical simulations (DNS) of such systems are computationally prohibitive. To address this, we present a novel physics-informed spatio-temporal surrogate model for Rayleigh-B\'enard convection (RBC), a canonical example of convective fluid flow. Our approach combines convolutional neural networks for spatial feature extraction with an innovative recurrent architecture inspired by large language models, comprising a context builder and a sequence generator to capture temporal dynamics. Inference is penalized with respect to the governing partial differential equations to ensure physical interpretability. Given the sensitivity of turbulent convection to initial conditions, we quantify uncertainty using a conformal prediction framework. This model replicates key features of RBC dynamics while significantly reducing computational cost, offering a scalable alternative to DNS for long-term simulations.
Related papers
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics.<n>We demonstrate performance of the algorithm on two PDEs: a linear equation which governs slightly compressible fluid flow in porous media and the wave equation.<n>Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest.
arXiv Detail & Related papers (2025-07-24T11:02:13Z) - Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants [0.0]
Generative models have demonstrated remarkable success in domains such as text, image, and video.<n>In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation.<n>We propose a novel generative model based on interpolants, which enables probabilistic forecasting while incorporating physical constraints.
arXiv Detail & Related papers (2025-04-08T09:29:01Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
We present a RNN model based on convolutional neural networks for modeling the nonlinear non-adiabatic dynamics of hybrid quantum-classical systems.<n> validation studies show that the trained PARC model could reproduce the space-time evolution of a one-dimensional semi-classical Holstein model.
arXiv Detail & Related papers (2024-12-09T16:23:25Z) - Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics.<n>Traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions.<n>This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D blood flow models.
arXiv Detail & Related papers (2024-11-08T15:22:20Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Reconstructing Turbulent Flows Using Physics-Aware Spatio-Temporal
Dynamics and Test-Time Refinement [10.711201734103073]
We propose a new physics-guided neural network for reconstructing the sequential DNS from low-resolution LES data.
A Sim-based refinement method is also developed to enforce physical constraints and further reduce the accumulated reconstruction errors over long periods.
arXiv Detail & Related papers (2023-04-24T14:33:34Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.