Towards Practical Defect-Focused Automated Code Review
- URL: http://arxiv.org/abs/2505.17928v2
- Date: Wed, 28 May 2025 09:21:00 GMT
- Title: Towards Practical Defect-Focused Automated Code Review
- Authors: Junyi Lu, Lili Jiang, Xiaojia Li, Jianbing Fang, Fengjun Zhang, Li Yang, Chun Zuo,
- Abstract summary: We explore the full automation pipeline within the online recommendation service, analyzing industry-grade C++s.<n>We identify four key challenges: 1) capturing relevant context, 2) improving key inclusion, 3) reducing false alarm rates (FAR), and 4) integrating human bug slicing.<n>Our approach, validated on real-world merge requests from historical fault reports, achieves a 2x improvement over standard LLMs and a 10x gain over previous baselines.
- Score: 8.370750734081088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity of code reviews has driven efforts to automate review comments, but prior approaches oversimplify this task by treating it as snippet-level code-to-text generation and relying on text similarity metrics like BLEU for evaluation. These methods overlook repository context, real-world merge request evaluation, and defect detection, limiting their practicality. To address these issues, we explore the full automation pipeline within the online recommendation service of a company with nearly 400 million daily active users, analyzing industry-grade C++ codebases comprising hundreds of thousands of lines of code. We identify four key challenges: 1) capturing relevant context, 2) improving key bug inclusion (KBI), 3) reducing false alarm rates (FAR), and 4) integrating human workflows. To tackle these, we propose 1) code slicing algorithms for context extraction, 2) a multi-role LLM framework for KBI, 3) a filtering mechanism for FAR reduction, and 4) a novel prompt design for better human interaction. Our approach, validated on real-world merge requests from historical fault reports, achieves a 2x improvement over standard LLMs and a 10x gain over previous baselines. While the presented results focus on C++, the underlying framework design leverages language-agnostic principles (e.g., AST-based analysis), suggesting potential for broader applicability.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - SwingArena: Competitive Programming Arena for Long-context GitHub Issue Solving [90.32201622392137]
We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs)<n>Unlike traditional static benchmarks, SwingArena models the collaborative process of software by pairing LLMs as iterations, who generate patches, and reviewers, who create test cases and verify the patches through continuous integration (CI) pipelines.
arXiv Detail & Related papers (2025-05-29T18:28:02Z) - Rethinking Code Review Workflows with LLM Assistance: An Empirical Study [2.9593087583214173]
This paper combines an exploratory field study of current code review practices with a field experiment involving two variations of an LLM-assisted code review tool.<n>The study identifies key challenges in traditional code reviews, including frequent context switching and insufficient contextual information.<n>In the field experiment, we developed two prototype variations: one offering LLM-generated reviews upfront and the other enabling on-demand interaction.
arXiv Detail & Related papers (2025-05-22T07:54:07Z) - Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling [90.86991492288487]
evaluating constraint on every token can be prohibitively expensive.<n> LCD can distort the global distribution over strings, sampling tokens based only on local information.<n>We show that our approach is superior to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-07T18:30:18Z) - Reasoning with LLMs for Zero-Shot Vulnerability Detection [0.9208007322096533]
We present textbfVulnSage, a comprehensive evaluation framework and a curated dataset from diverse, large-scale open-source system software projects.<n>The framework supports multi-granular analysis across function, file, and inter-function levels.<n>It employs four diverse zero-shot prompt strategies: Baseline, Chain-of-context, Think, and Think & verify.
arXiv Detail & Related papers (2025-03-22T23:59:17Z) - CodeReviewQA: The Code Review Comprehension Assessment for Large Language Models [10.108114365564926]
State-of-the-art large language models (LLMs) have demonstrated impressive code generation capabilities but struggle with real-world software engineering tasks.<n>Code review comments are often implicit, ambiguous, and colloquial, requiring models to grasp both code and human intent.<n>This challenge calls for evaluating large language models' ability to bridge both technical and conversational contexts.
arXiv Detail & Related papers (2025-03-20T14:07:31Z) - Prompting and Fine-tuning Large Language Models for Automated Code Review Comment Generation [5.6001617185032595]
Large language models pretrained on both programming and natural language data tend to perform well in code-oriented tasks.
We fine-tune open-source Large language models (LLM) in parameter-efficient, quantized low-rank fashion on consumer-grade hardware to improve review comment generation.
arXiv Detail & Related papers (2024-11-15T12:01:38Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - Automating Patch Set Generation from Code Review Comments Using Large Language Models [2.045040820541428]
We provide code contexts to five popular Large Language Models (LLMs)
We obtain the suggested code-changes (patch sets) derived from real-world code-review comments.
The performance of each model is meticulously assessed by comparing their generated patch sets against the historical data of human-generated patch-sets.
arXiv Detail & Related papers (2024-04-10T02:46:08Z) - Interactive Code Generation via Test-Driven User-Intent Formalization [60.90035204567797]
Large language models (LLMs) produce code from informal natural language (NL) intent.
It is hard to define a notion of correctness since natural language can be ambiguous and lacks a formal semantics.
We describe a language-agnostic abstract algorithm and a concrete implementation TiCoder.
arXiv Detail & Related papers (2022-08-11T17:41:08Z) - CoSQA: 20,000+ Web Queries for Code Search and Question Answering [63.92224685262063]
CoSQA dataset includes 20,604 labels for pairs of natural language queries and codes.
We introduce a contrastive learning method dubbed CoCLR to enhance query-code matching.
We show that evaluated on CodeXGLUE with the same CodeBERT model, training on CoSQA improves the accuracy of code question answering by 5.1%.
arXiv Detail & Related papers (2021-05-27T15:37:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.