論文の概要: VeriThinker: Learning to Verify Makes Reasoning Model Efficient
- arxiv url: http://arxiv.org/abs/2505.17941v1
- Date: Fri, 23 May 2025 14:17:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.14455
- Title: VeriThinker: Learning to Verify Makes Reasoning Model Efficient
- Title(参考訳): VeriThinker: 推論モデルを効果的に検証する学習
- Authors: Zigeng Chen, Xinyin Ma, Gongfan Fang, Ruonan Yu, Xinchao Wang,
- Abstract要約: 大型推論モデルは、Chain-of-Thought (CoT)推論を用いて複雑なタスクで優れている。
過度に考える傾向は、必然的に長い推論連鎖に繋がる。
我々は,CoT圧縮の新しい手法であるVeriThinkerを紹介する。
- 参考スコア(独自算出の注目度): 52.74493506816969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Reasoning Models (LRMs) excel at complex tasks using Chain-of-Thought (CoT) reasoning. However, their tendency to overthinking leads to unnecessarily lengthy reasoning chains, dramatically increasing inference costs. To mitigate this issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike conventional methods that fine-tune LRMs directly on the original reasoning task using synthetic concise CoT data, we innovatively fine-tune the model solely through an auxiliary verification task. By training LRMs to accurately verify the correctness of CoT solutions, the LRMs inherently become more discerning about the necessity of subsequent self-reflection steps, thereby effectively suppressing overthinking. Extensive experiments validate that VeriThinker substantially reduces reasoning chain lengths while maintaining or even slightly improving accuracy. When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning tokens on MATH500 from 3790 to 2125 while improving accuracy by 0.8% (94.0% to 94.8%), and on AIME25, tokens decrease from 14321 to 10287 with a 2.1% accuracy gain (38.7% to 40.8%). Additionally, our experiments demonstrate that VeriThinker can also be zero-shot generalized to speculative reasoning. Code is available at https://github.com/czg1225/VeriThinker
- Abstract(参考訳): 大型推論モデル (LRM) は、Chain-of-Thought (CoT) 推論を用いて複雑なタスクに優れる。
しかし、過度に考える傾向は、不必要に長い推論連鎖をもたらし、推論コストが劇的に増加する。
この問題を軽減するために,我々は,CoT圧縮の新しいアプローチであるVeriThinkerを紹介する。
合成簡潔なCoTデータを用いて、元の推論タスクを直接微調整する従来の手法とは異なり、我々は、補助的な検証タスクのみを通して、モデルを革新的に微調整する。
LRMをトレーニングしてCoT溶液の正しさを正確に検証することにより、LEMは本質的に、その後の自己回帰ステップの必要性をより正確に把握し、過度な思考を効果的に抑制する。
広範囲な実験により、VeriThinkerは精度を維持またはわずかに改善しながら、推論チェーンの長さを著しく減少させることが検証された。
DeepSeek-R1-Distill-Qwen-7Bに適用すると、MATH500の推論トークンは3790から2125に減少し、精度は0.8%(94.0%から94.8%)、AIME25ではトークンは14321から10287に減少し、精度は2.1%(38.7%から40.8%)となった。
さらに、我々の実験では、VeriThinkerは投機的推論に対してゼロショットの一般化も可能であることを示した。
コードはhttps://github.com/czg1225/VeriThinkerで入手できる。
関連論文リスト
- ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
大規模推論モデル(LRM)の最近の進歩は、チェーン・オブ・ソート(CoT)による生成長のスケールアップにより、複雑な推論タスクにおける顕著な性能向上を実現している。
本稿では,推論過程のトークン生成中にテキストヒントを注入することにより,推論モデルに簡潔な発話を促すフレームワークであるConciseHintを提案する。
DeepSeek-R1 や Qwen-3 シリーズを含む最先端の LRM 実験により,本手法は性能を良好に保ちながら簡潔な推論過程を効果的に生成できることが実証された。
論文 参考訳(メタデータ) (2025-06-23T16:20:44Z) - What makes Reasoning Models Different? Follow the Reasoning Leader for Efficient Decoding [84.42056293290015]
推論モデルと非推論モデルの間のトークンレベルのミスアライメントを分析する。
本稿では,FoReaL-Decodingを提案する。
一般的な4つの数学推論ベンチマークにおいて、FoReaL-Decodingは理論FLOPを30から50%減らし、CoTの長さを最大40%減らした。
論文 参考訳(メタデータ) (2025-06-08T05:08:32Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
大規模言語モデル(LLM)は、テスト時間スケーリングとして知られる、テスト時間計算の増加の恩恵を受ける。
しかし、推論最適化モデルはしばしば単純な問題さえ考え過ぎ、過度に冗長な出力を生成し、トークン効率を低下させる。
1)強化学習は前方推論の情報密度を減少させ,(2)後方連鎖学習は冗長でしばしば不要な検証ステップを促進する。
論文 参考訳(メタデータ) (2025-05-28T06:24:45Z) - Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition [11.858707687894757]
大共振モデル (LRM) は、最終解を導出する長大なチェーン・オブ・ソート (CoT) に対して批判される。
本稿では,Multi-Turn Decomposition (MinD)を導入し,従来のCoTを明示的,構造化的,ターンワイドなインタラクションのシーケンスにデコードする。
MinDは、出力トークンの使用量と最初のトークンの時間(TTFT)の両方を最大70%削減することができる。
論文 参考訳(メタデータ) (2025-05-26T10:18:57Z) - Concise Reasoning, Big Gains: Pruning Long Reasoning Trace with Difficulty-Aware Prompting [28.537281448659634]
本稿では,性能損失を伴わない推論トレースを動的に短縮するDAP法を提案する。
実験では、難解なCoTサンプルの100Kだけを微調整した学生モデルが800KのLong CoTサンプルで蒸留されたモデルより優れている。
また,本手法は,11種類の多種多様なベンチマークにおいて,比較的少ないトークンを用いて,長鎖よりも短い難易度CoTの精度を向上する。
論文 参考訳(メタデータ) (2025-05-26T09:04:44Z) - Not All Tokens Are What You Need In Thinking [34.767739567093656]
条件付きトークン選択(CTS)は、思考の連鎖において最も重要なトークンのみを特定し保存する。
CTSは、強い推論性能を維持しながら、効果的に長いCoTを圧縮する。
さらにトレーニングトークンを42%削減すると、限界5%の精度低下しか生じず、推論トークンの75.8%が減少する。
論文 参考訳(メタデータ) (2025-05-23T12:41:29Z) - Process Reward Models That Think [86.88809596842428]
ステップバイステップ検証 - プロセス報酬モデル(PRM)としても知られる - は、テスト時間スケーリングの鍵となる要素である。
この研究は、検証チェーン・オブ・シント(CoT)を生成することにより、ソリューションのすべてのステップを検証する言語化されたステップワイド報酬モデルとして、データ効率の高いPRMを構築することを目的としている。
我々は差別的PRMよりもプロセスラベルを桁違いに少なめに微調整した長いCoT検証器ThinkPRMを提案する。
論文 参考訳(メタデータ) (2025-04-23T15:44:54Z) - Dynamic Early Exit in Reasoning Models [13.982812528756504]
長いチェーン・オブ・シンクレット(CoT)生成における再考は、問題解決の効率を低下させるだけでなく、精度損失のリスクも引き起こす。
我々は,LLMが生成時に早期終了によってCoT配列を自己トランケートできる簡易かつ効果的な方法を提案する。
提案手法は追加のトレーニングを必要とせず,既存の o1 ライクな推論 LLM にシームレスに統合することができる。
論文 参考訳(メタデータ) (2025-04-22T13:36:53Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
大規模言語モデル(LLM)は、拡張チェーン・オブ・ソート(CoT)推論機構を通じて複雑な推論タスクに魅力的な機能を示した。
最近の研究では、CoT推論トレースにかなりの冗長性が示されており、これはモデル性能に悪影響を及ぼす。
我々は,CoTプロセスをシームレスに校正し,高い効率性を示しながら精度を向上する,トレーニング不要なアプローチであるSEALを紹介した。
論文 参考訳(メタデータ) (2025-04-07T02:42:07Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
大推論モデル(LRM)は、長いチェーン・オブ・シント(Long CoT)に従うことによって複雑な推論問題に取り組む
また,Large Language Model (LLM) は,データ効率の教師付き微調整 (SFT) とパラメータ効率の低い低ランク適応 (LoRA) により,Long CoT推論を効果的に学習できることを見出した。
たった17kのCoTトレーニングサンプルで、Qwen2.5-32B-Instructモデルは、幅広い数学およびコーディングベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2025-02-11T08:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。