GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation
- URL: http://arxiv.org/abs/2405.04890v3
- Date: Mon, 16 Sep 2024 20:28:00 GMT
- Title: GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation
- Authors: Ivan Bilić, Filip Marić, Fabio Bonsignorio, Ivan Petrović,
- Abstract summary: GISR is a robot-to-camera pose estimation method that prioritizes execution in real-time.
We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In autonomous robotics, measurement of the robot's internal state and perception of its environment, including interaction with other agents such as collaborative robots, are essential. Estimating the pose of the robot arm from a single view has the potential to replace classical eye-to-hand calibration approaches and is particularly attractive for online estimation and dynamic environments. In addition to its pose, recovering the robot configuration provides a complete spatial understanding of the observed robot that can be used to anticipate the actions of other agents in advanced robotics use cases. Furthermore, this additional redundancy enables the planning and execution of recovery protocols in case of sensor failures or external disturbances. We introduce GISR - a deep configuration and robot-to-camera pose estimation method that prioritizes execution in real-time. GISR consists of two modules: (i) a geometric initialization module that efficiently computes an approximate robot pose and configuration, and (ii) a deep iterative silhouette-based refinement module that arrives at a final solution in just a few iterations. We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy, and can compete with approaches that rely on ground-truth proprioception and recover only the pose.
Related papers
- RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation through Embedding Predictive Pre-Training [27.63332596592781]
Vision-based pose estimation of articulated robots with unknown joint angles has applications in collaborative robotics and human-robot interaction tasks.
Current frameworks use neural network encoders to extract image features and downstream layers to predict joint angles and robot pose.
We introduce RoboPEPP, a method that fuses information about the robot's physical model into the encoder using a masking-based self-supervised embedding-predictive architecture.
arXiv Detail & Related papers (2024-11-26T18:26:17Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
Markerless pose estimation methods have eliminated the need for time-consuming physical setups for camera-to-robot calibration.
We propose a novel framework capable of estimating the robot pose with partially visible robot manipulators.
arXiv Detail & Related papers (2024-09-16T16:22:43Z) - Real-time Holistic Robot Pose Estimation with Unknown States [30.41806081818826]
Estimating robot pose from RGB images is a crucial problem in computer vision and robotics.
Previous methods presume full knowledge of robot internal states, e.g. ground-truth robot joint angles.
This work introduces an efficient framework for real-time robot pose estimation from RGB images without requiring known robot states.
arXiv Detail & Related papers (2024-02-08T13:12:50Z) - Multi-Robot Relative Pose Estimation in SE(2) with Observability
Analysis: A Comparison of Extended Kalman Filtering and Robust Pose Graph
Optimization [1.0485739694839669]
We focus on cooperative localization and observability analysis of relative pose estimation.
For ROS/Gazebo simulations, we explore four sensing and communication structures.
In hardware experiments, two Turtlebot3 equipped with UWB modules are used for real-world inter-robot relative pose estimation.
arXiv Detail & Related papers (2024-01-27T06:09:56Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
This work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot.
We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion.
We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously.
arXiv Detail & Related papers (2022-09-22T16:20:17Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori.
We combine a classical geometric formulation with deep learning and extend the use of epipolar multi-rigid-body constraints to solve this task.
arXiv Detail & Related papers (2020-11-30T20:46:48Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.