Canonical Pose Reconstruction from Single Depth Image for 3D Non-rigid Pose Recovery on Limited Datasets
- URL: http://arxiv.org/abs/2505.17992v1
- Date: Fri, 23 May 2025 14:58:34 GMT
- Title: Canonical Pose Reconstruction from Single Depth Image for 3D Non-rigid Pose Recovery on Limited Datasets
- Authors: Fahd Alhamazani, Yu-Kun Lai, Paul L. Rosin,
- Abstract summary: 3D reconstruction from 2D inputs, especially for non-rigid objects like humans, presents unique challenges.<n>Traditional methods often struggle with non-rigid shapes, which require extensive training data to cover the entire deformation space.<n>This study proposes a canonical pose reconstruction model that transforms single-view depth images of deformable shapes into a canonical form.
- Score: 55.84702107871358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D reconstruction from 2D inputs, especially for non-rigid objects like humans, presents unique challenges due to the significant range of possible deformations. Traditional methods often struggle with non-rigid shapes, which require extensive training data to cover the entire deformation space. This study addresses these limitations by proposing a canonical pose reconstruction model that transforms single-view depth images of deformable shapes into a canonical form. This alignment facilitates shape reconstruction by enabling the application of rigid object reconstruction techniques, and supports recovering the input pose in voxel representation as part of the reconstruction task, utilizing both the original and deformed depth images. Notably, our model achieves effective results with only a small dataset of approximately 300 samples. Experimental results on animal and human datasets demonstrate that our model outperforms other state-of-the-art methods.
Related papers
- Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild [22.82439286651921]
We propose a unified regression model that integrates segmentation and reconstruction, specifically designed for 3D shape reconstruction.<n>We also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds.<n>Our training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images.
arXiv Detail & Related papers (2024-03-21T16:40:10Z) - SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction [2.2954246824369218]
3D image reconstruction from a limited number of 2D images has been a long-standing challenge in computer vision and image analysis.
We propose a shape-aware network based on diffusion models for 3D image reconstruction, named SADIR, to address these issues.
arXiv Detail & Related papers (2023-09-06T19:30:22Z) - A Fusion of Variational Distribution Priors and Saliency Map Replay for Continual 3D Reconstruction [1.2289361708127877]
Single-image 3D reconstruction is a research challenge focused on predicting 3D object shapes from single-view images.
This task requires significant data acquisition to predict both visible and occluded portions of the shape.
We propose a continual learning-based 3D reconstruction method where our goal is to design a model using Variational Priors that can still reconstruct the previously seen classes reasonably even after training on new classes.
arXiv Detail & Related papers (2023-08-17T06:48:55Z) - Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model [76.64071133839862]
Capturing general deforming scenes from monocular RGB video is crucial for many computer graphics and vision applications.
Our method, Ub4D, handles large deformations, performs shape completion in occluded regions, and can operate on monocular RGB videos directly by using differentiable volume rendering.
Results on our new dataset, which will be made publicly available, demonstrate a clear improvement over the state of the art in terms of surface reconstruction accuracy and robustness to large deformations.
arXiv Detail & Related papers (2022-06-16T17:59:54Z) - Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape
Laplacian [58.704089101826774]
We present a 3D-aware image deformation method with minimal restrictions on shape category and deformation type.
We take a supervised learning-based approach to predict the shape Laplacian of the underlying volume of a 3D reconstruction represented as a point cloud.
In the experiments, we present our results of deforming 2D character and clothed human images.
arXiv Detail & Related papers (2022-03-29T04:57:18Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
We present NeuralReshaper, a novel method for semantic reshaping of human bodies in single images using deep generative networks.
Our approach follows a fit-then-reshape pipeline, which first fits a parametric 3D human model to a source human image.
To deal with the lack-of-data problem that no paired data exist, we introduce a novel self-supervised strategy to train our network.
arXiv Detail & Related papers (2022-03-20T09:02:13Z) - Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction
of Clothed People [36.30755368202957]
We present a novel method to improve the accuracy of the 3D reconstruction of clothed human shape from a single image.
The accuracy and completeness for reconstruction of clothed people is limited due to the large variation in shape resulting from clothing, hair, body size, pose and camera viewpoint.
arXiv Detail & Related papers (2020-09-29T17:18:00Z) - 3D Reconstruction of Novel Object Shapes from Single Images [23.016517962380323]
We show that our proposed SDFNet achieves state-of-the-art performance on seen and unseen shapes.
We provide the first large-scale evaluation of single image shape reconstruction to unseen objects.
arXiv Detail & Related papers (2020-06-14T00:34:26Z) - Learning Pose-invariant 3D Object Reconstruction from Single-view Images [61.98279201609436]
In this paper, we explore a more realistic setup of learning 3D shape from only single-view images.
The major difficulty lies in insufficient constraints that can be provided by single view images.
We propose an effective adversarial domain confusion method to learn pose-disentangled compact shape space.
arXiv Detail & Related papers (2020-04-03T02:47:35Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.