Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild
- URL: http://arxiv.org/abs/2403.14539v2
- Date: Thu, 28 Nov 2024 13:53:55 GMT
- Title: Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild
- Authors: Junhyeong Cho, Kim Youwang, Hunmin Yang, Tae-Hyun Oh,
- Abstract summary: We propose a unified regression model that integrates segmentation and reconstruction, specifically designed for 3D shape reconstruction.
We also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds.
Our training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images.
- Score: 22.82439286651921
- License:
- Abstract: Recent monocular 3D shape reconstruction methods have shown promising zero-shot results on object-segmented images without any occlusions. However, their effectiveness is significantly compromised in real-world conditions, due to imperfect object segmentation by off-the-shelf models and the prevalence of occlusions. To effectively address these issues, we propose a unified regression model that integrates segmentation and reconstruction, specifically designed for occlusion-aware 3D shape reconstruction. To facilitate its reconstruction in the wild, we also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds. Training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images, using significantly fewer parameters than competing approaches.
Related papers
- Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - pix2gestalt: Amodal Segmentation by Synthesizing Wholes [34.45464291259217]
pix2gestalt is a framework for zero-shot amodal segmentation.
We learn a conditional diffusion model for reconstructing whole objects in challenging zero-shot cases.
arXiv Detail & Related papers (2024-01-25T18:57:36Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images [49.52782544649703]
We propose a novel approach to reconstruct 3D human body shapes based on a sparse set of RGBD frames.
The main challenge is how to robustly fuse these sparse frames into a canonical 3D model.
Our framework is flexible, with potential applications going beyond shape reconstruction.
arXiv Detail & Related papers (2020-06-05T18:53:36Z) - Reconstruct, Rasterize and Backprop: Dense shape and pose estimation
from a single image [14.9851111159799]
This paper presents a new system to obtain dense object reconstructions along with 6-DoF poses from a single image.
We leverage recent advances in differentiable rendering (in particular, robotics) to close the loop with 3D reconstruction in camera frame.
arXiv Detail & Related papers (2020-04-25T20:53:43Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.