論文の概要: Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective
- arxiv url: http://arxiv.org/abs/2505.17997v2
- Date: Tue, 27 May 2025 08:30:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 14:37:19.958034
- Title: Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective
- Title(参考訳): VAPOの限界の分析と理解に向けて:理論的展望
- Authors: Jintian Shao, Yiming Cheng, Hongyi Huang, Beiwen Zhang, Zhiyu Wu, You Shan, Mingkai Zheng,
- Abstract要約: VAPOは、大規模言語モデルの強化学習のためのフレームワークである。
これは、値モデルバイアス、不均一なシーケンス長、スパース報酬信号といった課題に対処する。
本稿では,理論的な観点からVAPOを考察し,その仮定が課題となる分野を明らかにする。
- 参考スコア(独自算出の注目度): 6.963986923957048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The VAPO framework has demonstrated significant empirical success in enhancing the efficiency and reliability of reinforcement learning for long chain-of-thought (CoT) reasoning tasks with large language models (LLMs). By systematically addressing challenges such as value model bias, heterogeneous sequence lengths, and sparse reward signals, VAPO achieves state-of-the-art performance. While its practical benefits are evident, a deeper theoretical understanding of its underlying mechanisms and potential limitations is crucial for guiding future advancements. This paper aims to initiate such a discussion by exploring VAPO from a theoretical perspective, highlighting areas where its assumptions might be challenged and where further investigation could yield more robust and generalizable reasoning agents. We delve into the intricacies of value function approximation in complex reasoning spaces, the optimality of adaptive advantage estimation, the impact of token-level optimization, and the enduring challenges of exploration and generalization.
- Abstract(参考訳): VAPOフレームワークは、大規模言語モデル(LLM)を用いた長いチェーン・オブ・シークレット(CoT)推論タスクにおける強化学習の効率性と信頼性を高める上で、実証的な成功を収めた。
価値モデルバイアス、不均一シーケンス長、スパース報酬信号などの課題に体系的に対処することにより、VAPOは最先端のパフォーマンスを達成する。
その実践的な利点は明らかであるが、その基盤となるメカニズムと潜在的な限界に関する深い理論的理解は、将来の進歩を導くために不可欠である。
本稿では,理論的な観点からVAPOを探求し,その仮定が疑問視されうる領域と,さらなる調査がより堅牢で一般化可能な推論エージェントを創出することを目的としている。
複素推論空間における値関数近似の複雑さ,適応的優位性推定の最適性,トークンレベルの最適化の影響,探索と一般化の持続的課題について検討する。
関連論文リスト
- Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
教師付き微調整とオフライン強化学習の間には,新たな理論的関係が確立されている。
広く使われているビームサーチ法は、許容できない過度な最適化に悩まされていることを示す。
本稿では,トークンレベル$Q$-value推定のための簡易かつ効果的な補助的損失を導入したSupervised Optimism Correctionを提案する。
論文 参考訳(メタデータ) (2025-04-10T07:50:03Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
近年のLRM(Large Reasoning Models)の進歩は、特殊推論タスクにおいて顕著な性能を示している。
議論的推論能力の獲得は, LRMの基礎的能力を大幅に低下させることを示す。
適応推論(Zero-Thinking, Less-Thinking, Summary-Thinking)がこれらの欠点を効果的に軽減できることを示します。
論文 参考訳(メタデータ) (2025-03-23T08:18:51Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL)は、単一のフォワードパスで最小限の追加計算で信頼性の高い不確実性推定を提供する。
まず、主観的論理理論であるEDLの理論的基礎を掘り下げ、他の不確実性推定フレームワークとの区別について議論する。
さまざまな機械学習パラダイムや下流タスクにまたがる広範な応用について詳しく述べる。
論文 参考訳(メタデータ) (2024-09-07T05:55:06Z) - Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
ほとんどの実世界の強化学習アプリケーションでは、状態情報は部分的にしか観測できないため、マルコフ決定プロセスの仮定を破る。
我々は、部分的な観察から実践的な強化学習のためのコヒーレントな枠組みと抽出可能なアルゴリズムアプローチへと導く表現に基づく視点を開発する。
提案アルゴリズムは,様々なベンチマークで部分的な観察を行い,最先端の性能を超えることができることを実証的に実証した。
論文 参考訳(メタデータ) (2023-11-20T23:56:58Z) - Constrained Bayesian Optimization with Adaptive Active Learning of
Unknown Constraints [10.705151736050967]
制約下での目的の最適化は、科学実験設計、医療療法の設計、産業プロセス最適化といった現実世界の応用において一般的なシナリオである。
一般のROIを決定するために,各側面から特定されたROIと交差する効率的なCBOフレームワークを提案する。
本稿では,実証的な証拠を通じて提案したCBOフレームワークの効率性とロバスト性を実証し,CBOアルゴリズムの実践的後悔境界を導出する根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-10-12T22:32:00Z) - Probabilistic Constrained Reinforcement Learning with Formal Interpretability [2.990411348977783]
本稿では,これらの解釈可能性問題に対処するために,適応ワッサースタイン変分最適化(AWaVO)を提案する。
提案手法は,コンバージェンス保証の解釈可能性,透明性の訓練,本質的な決定解釈を実現するために形式的手法を用いる。
TRPO-IPO, PCPO, CRPOといった最先端ベンチマークと比較して, AWaVOがハイパフォーマンスと十分な解釈可能性の間に合理的なトレードオフをもたらすことを実証的に検証する。
論文 参考訳(メタデータ) (2023-07-13T22:52:22Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Generalizing Goal-Conditioned Reinforcement Learning with Variational
Causal Reasoning [24.09547181095033]
Causal Graphは、オブジェクトとイベントの関係に基づいて構築された構造である。
2つのステップを交互に行う理論性能保証フレームワークを提案する。
我々の業績改善は因果発見、遷移モデリング、政策トレーニングの活発なサイクルに起因する。
論文 参考訳(メタデータ) (2022-07-19T05:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。