RemoteSAM: Towards Segment Anything for Earth Observation
- URL: http://arxiv.org/abs/2505.18022v3
- Date: Mon, 02 Jun 2025 10:46:01 GMT
- Title: RemoteSAM: Towards Segment Anything for Earth Observation
- Authors: Liang Yao, Fan Liu, Delong Chen, Chuanyi Zhang, Yijun Wang, Ziyun Chen, Wei Xu, Shimin Di, Yuhui Zheng,
- Abstract summary: We aim to develop a robust yet flexible visual foundation model for Earth observation.<n>It should possess strong capabilities in recognizing and localizing diverse visual targets.<n>We present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks.
- Score: 29.707796048411705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
Related papers
- ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models [10.858627659431928]
Service robots must effectively recognize and segment unknown objects to enhance their functionality.<n>Traditional supervised learningbased segmentation techniques require extensive annotated datasets.<n>This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT)
arXiv Detail & Related papers (2025-02-05T15:22:20Z) - EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.<n>The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.<n>Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - Probing Fine-Grained Action Understanding and Cross-View Generalization of Foundation Models [13.972809192907931]
Foundation models (FMs) are large neural networks trained on broad datasets.
Human activity recognition in video has advanced with FMs, driven by competition among different architectures.
This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition.
arXiv Detail & Related papers (2024-07-22T12:59:57Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - One for All: Toward Unified Foundation Models for Earth Vision [24.358013737755822]
Current remote sensing foundation models specialize in a single modality or a specific spatial resolution range.
We introduce OFA-Net: employing a single, shared Transformer backbone for multiple data modalities with different spatial resolutions.
The proposed method is evaluated on 12 distinct downstream tasks and demonstrates promising performance.
arXiv Detail & Related papers (2024-01-15T08:12:51Z) - Zero-Shot Refinement of Buildings' Segmentation Models using SAM [6.110856077714895]
We present a novel approach to adapt foundation models to address existing models' generalization dropback.
Among several models, our focus centers on the Segment Anything Model (SAM)
SAM does not offer recognition abilities and thus fails to classify and tag localized objects.
This novel approach augments SAM with recognition abilities, a first of its kind.
arXiv Detail & Related papers (2023-10-03T07:19:59Z) - Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models [7.452422412106768]
We propose a novel method named Text2Seg for remote sensing semantic segmentation.
It overcomes the dependency on extensive annotations by employing an automatic prompt generation process.
We show that Text2Seg significantly improves zero-shot prediction performance compared to the vanilla SAM model.
arXiv Detail & Related papers (2023-04-20T18:39:41Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains.
We reconcile the generalization and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
A model trained on MSeg ranks first on the WildDash-v1 leaderboard for robust semantic segmentation, with no exposure to WildDash data during training.
arXiv Detail & Related papers (2021-12-27T16:16:35Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.