論文の概要: Structured Thinking Matters: Improving LLMs Generalization in Causal Inference Tasks
- arxiv url: http://arxiv.org/abs/2505.18034v1
- Date: Fri, 23 May 2025 15:37:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.200722
- Title: Structured Thinking Matters: Improving LLMs Generalization in Causal Inference Tasks
- Title(参考訳): 構造的思考事項:因果推論タスクにおけるLLMの一般化の改善
- Authors: Wentao Sun, Joao Paulo Nogueira, Alonso Silva,
- Abstract要約: Corr2Cause のデータセットによる最近の結果は、最先端の LLM がランダムベースラインをわずかに上回っていることを示している。
我々は、構造化知識グラフを構築するためのモデルを導くことによって、その思考を構造化する能力を備えたモデルを提供する。
Qwen3-32Bモデル(推論モデル)を用いたCorr2Causeデータセットベンチマークのテストサブセットの実験は、標準的なダイレクトプロンプトメソッドよりも大幅に向上したことを示している。
- 参考スコア(独自算出の注目度): 0.7988085110283119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite remarkable advances in the field, LLMs remain unreliable in distinguishing causation from correlation. Recent results from the Corr2Cause dataset benchmark reveal that state-of-the-art LLMs -- such as GPT-4 (F1 score: 29.08) -- only marginally outperform random baselines (Random Uniform, F1 score: 20.38), indicating limited capacity of generalization. To tackle this limitation, we propose a novel structured approach: rather than directly answering causal queries, we provide the model with the capability to structure its thinking by guiding the model to build a structured knowledge graph, systematically encoding the provided correlational premises, to answer the causal queries. This intermediate representation significantly enhances the model's causal capabilities. Experiments on the test subset of the Corr2Cause dataset benchmark with Qwen3-32B model (reasoning model) show substantial gains over standard direct prompting methods, improving F1 scores from 32.71 to 48.26 (over 47.5% relative increase), along with notable improvements in precision and recall. These results underscore the effectiveness of providing the model with the capability to structure its thinking and highlight its promising potential for broader generalization across diverse causal inference tasks.
- Abstract(参考訳): この分野の顕著な進歩にもかかわらず、LLMは相関関係の因果関係を区別する上で信頼できないままである。
Corr2Cause のデータセットによる最近の結果は、GPT-4 (F1 スコア:29.08)のような最先端の LLM がランダムベースライン(Random Uniform, F1 スコア:20.38)をわずかに上回り、一般化の能力の限界を示していることを示している。
因果クエリに直接答えるのではなく、モデルに構造化知識グラフを構築し、与えられた相関前提を体系的に符号化し、因果クエリに応答することで、その思考を構造化する能力を提供する。
この中間表現はモデルの因果能力を大幅に向上させる。
Qwen3-32BモデルによるCorr2Causeデータセットベンチマーク(推論モデル)のテストサブセットの実験では、標準的なダイレクトプロンプト手法よりも大幅に向上し、F1スコアが32.71から48.26(相対的な47.5%以上)に改善され、精度とリコールが向上した。
これらの結果は、モデルにその思考を構造化する能力を提供し、様々な因果推論タスクにまたがるより広範な一般化の可能性を強調している。
関連論文リスト
- Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
大規模言語モデル (LLM) 時代における評価の課題の1つは一般化問題である。
従来の性能スコアを補完するメカニズムの解釈可能性向上指標であるモデル利用指数(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - A NotSo Simple Way to Beat Simple Bench [0.0]
本稿では,大規模言語モデル(LLM)における推論能力向上のための新しい枠組みを提案する。
モデル精度とロバスト性を改善するために,グローバルな整合性チェックと組み合わせたマルチステッププロンプト戦略を提案する。
クロードは論理的整合性を維持するのに優れ, GPT-4oは探索的創造性を示すが, 曖昧なプロンプトに苦しむ。
論文 参考訳(メタデータ) (2024-12-12T16:04:31Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。