MathEDU: Towards Adaptive Feedback for Student Mathematical Problem-Solving
- URL: http://arxiv.org/abs/2505.18056v1
- Date: Fri, 23 May 2025 15:59:39 GMT
- Title: MathEDU: Towards Adaptive Feedback for Student Mathematical Problem-Solving
- Authors: Wei-Ling Hsu, Yu-Chien Tang, An-Zi Yen,
- Abstract summary: This paper explores the capabilities of large language models (LLMs) to assess students' math problem-solving processes and provide adaptive feedback.<n>We evaluate the model's ability to support personalized learning in two scenarios: one where the model has access to students' prior answer histories, and another simulating a cold-start context.
- Score: 3.2962799070467432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online learning enhances educational accessibility, offering students the flexibility to learn anytime, anywhere. However, a key limitation is the lack of immediate, personalized feedback, particularly in helping students correct errors in math problem-solving. Several studies have investigated the applications of large language models (LLMs) in educational contexts. In this paper, we explore the capabilities of LLMs to assess students' math problem-solving processes and provide adaptive feedback. The MathEDU dataset is introduced, comprising authentic student solutions annotated with teacher feedback. We evaluate the model's ability to support personalized learning in two scenarios: one where the model has access to students' prior answer histories, and another simulating a cold-start context. Experimental results show that the fine-tuned model performs well in identifying correctness. However, the model still faces challenges in generating detailed feedback for pedagogical purposes.
Related papers
- From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement Learning [76.09281171131941]
Large language models (LLMs) can transform education, but their optimization for direct question-answering often undermines effective pedagogy.<n>We propose an online reinforcement learning (RL)-based alignment framework that can quickly adapt LLMs into effective tutors.
arXiv Detail & Related papers (2025-05-21T15:00:07Z) - LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all.
LLMs struggle to precisely detect student's errors and tailor their feedback to these errors.
Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions.
arXiv Detail & Related papers (2024-07-12T10:11:40Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
We introduce a suite of models and evaluation methods we call AdapT.
AToM is a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimize for the correctness of future beliefs.
Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.
arXiv Detail & Related papers (2024-05-07T17:05:27Z) - Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning [25.90420385230675]
The pursuit of personalized education has led to the integration of Large Language Models (LLMs) in developing intelligent tutoring systems.
Our research uncovers a fundamental challenge in this approach: the Student Data Paradox''
This paradox emerges when LLMs, trained on student data to understand learner behavior, inadvertently compromise their own factual knowledge and reasoning abilities.
arXiv Detail & Related papers (2024-04-23T15:57:55Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - Bridging the Novice-Expert Gap via Models of Decision-Making: A Case Study on Remediating Math Mistakes [4.19968291791323]
We use cognitive task analysis to translate an expert's latent thought process into a decision-making model for remediation.
This involves an expert identifying (A) the student's error, (B) a remediation strategy, and (C) their intention before generating a response.
We construct a dataset of 700 real tutoring conversations, annotated by experts with their decisions.
arXiv Detail & Related papers (2023-10-16T17:59:50Z) - MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties
Grounded in Math Reasoning Problems [74.73881579517055]
We propose a framework to generate such dialogues by pairing human teachers with a Large Language Model prompted to represent common student errors.
We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues.
arXiv Detail & Related papers (2023-05-23T21:44:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.