Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning
- URL: http://arxiv.org/abs/2404.15156v2
- Date: Sat, 05 Oct 2024 08:54:35 GMT
- Title: Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning
- Authors: Shashank Sonkar, Naiming Liu, Richard G. Baraniuk,
- Abstract summary: The pursuit of personalized education has led to the integration of Large Language Models (LLMs) in developing intelligent tutoring systems.
Our research uncovers a fundamental challenge in this approach: the Student Data Paradox''
This paradox emerges when LLMs, trained on student data to understand learner behavior, inadvertently compromise their own factual knowledge and reasoning abilities.
- Score: 25.90420385230675
- License:
- Abstract: The pursuit of personalized education has led to the integration of Large Language Models (LLMs) in developing intelligent tutoring systems. To better understand and adapt to individual student needs, including their misconceptions, LLMs need to be trained on extensive datasets of student-tutor dialogues. Our research uncovers a fundamental challenge in this approach: the ``Student Data Paradox.'' This paradox emerges when LLMs, trained on student data to understand learner behavior, inadvertently compromise their own factual knowledge and reasoning abilities. We investigate this paradox by training state-of-the-art language models on student-tutor dialogue datasets and evaluating their performance across multiple benchmarks. These benchmarks assess various aspects of language model capabilities, including reasoning, truthfulness, and common sense understanding. Our findings reveal significant declines in the models' performance across these diverse benchmarks, indicating a broad impact on their capabilities when trained to model student behavior. Our research makes two primary contributions: (1) empirical demonstration of the Student Data Paradox through quantitative analysis of model performance, and (2) introduction of ``hallucination tokens'' as a mitigation strategy. These tokens, while improving performance, highlight the persistent challenge of balancing accurate student behavior modeling with maintaining the LLM's integrity as an educational tool. This study emphasizes the need for innovative solutions to reconcile the conflicting goals of faithfully understanding diverse student cognition while preserving the model's ability to provide accurate information and guidance.
Related papers
- Students Rather Than Experts: A New AI For Education Pipeline To Model More Human-Like And Personalised Early Adolescences [11.576679362717478]
This study focuses on language learning as a context for modeling virtual student agents.
By curating a dataset of personalized teacher-student interactions with various personality traits, we conduct multi-dimensional evaluation experiments.
arXiv Detail & Related papers (2024-10-21T07:18:24Z) - LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all.
LLMs struggle to precisely detect student's errors and tailor their feedback to these errors.
Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions.
arXiv Detail & Related papers (2024-07-12T10:11:40Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - Enhancing Student Performance Prediction on Learnersourced Questions
with SGNN-LLM Synergy [11.735587384038753]
We introduce an innovative strategy that synergizes the potential of integrating Signed Graph Neural Networks (SGNNs) and Large Language Model (LLM) embeddings.
Our methodology employs a signed bipartite graph to comprehensively model student answers, complemented by a contrastive learning framework that enhances noise resilience.
arXiv Detail & Related papers (2023-09-23T23:37:55Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
We rigorously analyze various generative language models on two dialog tutoring datasets for language learning.
We find that although current approaches can model tutoring in constrained learning scenarios, they perform poorly in less constrained scenarios.
Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring.
arXiv Detail & Related papers (2023-01-24T11:00:17Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Student-centric Model of Learning Management System Activity and
Academic Performance: from Correlation to Causation [2.169383034643496]
In recent years, there is a lot of interest in modeling students' digital traces in Learning Management System (LMS) to understand students' learning behavior patterns.
This paper explores a student-centric analytical framework for LMS activity data that can provide not only correlational but causal insights mined from observational data.
We envision that those insights will provide convincing evidence for college student support groups to launch student-centered and targeted interventions.
arXiv Detail & Related papers (2022-10-27T14:08:25Z) - Knowledge Tracing for Complex Problem Solving: Granular Rank-Based
Tensor Factorization [6.077274947471846]
We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE)
GRATE selects student attempts that can be aggregated while predicting students' performance in problems and discovering the concepts presented in them.
Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2022-10-06T06:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.