論文の概要: What Do You Need for Diverse Trajectory Stitching in Diffusion Planning?
- arxiv url: http://arxiv.org/abs/2505.18083v1
- Date: Fri, 23 May 2025 16:41:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.228131
- Title: What Do You Need for Diverse Trajectory Stitching in Diffusion Planning?
- Title(参考訳): 拡散計画における逆軌道スチッチに何が必要か
- Authors: Quentin Clark, Florian Shkurti,
- Abstract要約: 計画において、縫合はアルゴリズムが訓練されたデータのサブトラジェクトリをまとめて新しい多様な振る舞いを生成する能力である。
近年のBC法では縫合の習熟度が向上している。
この背景にある主な要因はよく理解されておらず、確実に縫合できる新しいアルゴリズムの開発を妨げる。
- 参考スコア(独自算出の注目度): 15.797944308366812
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In planning, stitching is an ability of algorithms to piece together sub-trajectories of data they are trained on to generate new and diverse behaviours. While stitching is historically a strength of offline reinforcement learning, recent generative behavioural cloning (BC) methods have also shown proficiency at stitching. However, the main factors behind this are poorly understood, hindering the development of new algorithms that can reliably stitch. Focusing on diffusion planners trained via BC, we find two properties are needed to compose: \emph{positional equivariance} and \emph{local receptiveness}. We use these two properties to explain architecture, data, and inference choices in existing generative BC methods based on diffusion planning, including replanning frequency, data augmentation, and data scaling. Experimental comparisions show that (1) while locality is more important than positional equivariance in creating a diffusion planner capable of composition, both are crucial (2) enabling these properties through relatively simple architecture choices can be competitive with more computationally expensive methods such as replanning or scaling data, and (3) simple inpainting-based guidance can guide architecturally compositional models to enable generalization in goal-conditioned settings.
- Abstract(参考訳): 計画において、縫合はアルゴリズムが訓練されたデータのサブトラジェクトリをまとめて新しい多様な振る舞いを生成する能力である。
縫合は歴史的にオフライン強化学習の強みであったが,近年の造形行動クローニング(BC)法では縫合の習熟度も高い。
しかし、この背景にある主な要因は理解されていないため、確実に縫合できる新しいアルゴリズムの開発を妨げている。
BC を通じて訓練された拡散プランナーに焦点をあてると、構成には二つの性質: \emph{positional equivariance} と \emph{local receptiveness} である。
我々は、これらの2つの特性を用いて、拡散計画に基づく既存の生成的BC法におけるアーキテクチャ、データ、および推論の選択について説明する。
実験結果から,(1) 局所性は, 構成可能な拡散プランナの作成において, 位置同値よりも重要であるが, (2) 比較的単純なアーキテクチャ選択によってこれらの特性を実現することは, 計画やスケーリングなどの計算コストの高い手法と競合しうること, (3) 単純なインペイントに基づくガイダンスは, 設計上の構成モデルを導くことによって, ゴール条件付き設定での一般化を可能にすることが示唆された。
関連論文リスト
- Generative Trajectory Stitching through Diffusion Composition [29.997765496994457]
CompDiffuserは、これまで見てきたタスクから短い軌跡を合成的に縫い合わせることで、新しいタスクを解決できる新しい生成的アプローチである。
我々は,さまざまな環境サイズ,エージェント状態次元,軌道タイプ,データ品質のトレーニングなど,さまざまな課題のベンチマークタスクについて実験を行い,CompDiffuserが既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-03-07T05:22:52Z) - LayoutDiffusion: Improving Graphic Layout Generation by Discrete
Diffusion Probabilistic Models [50.73105631853759]
レイアウト自動生成のための新しい生成モデルLayoutDiffusionを提案する。
このプロセスでは,前方ステップの成長に伴うレイアウトの混乱が増している。
これにより、プラグアンドプレイ方式で2つの条件付きレイアウト生成タスクを再トレーニングすることなく実現し、既存の方法よりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-03-21T04:41:02Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
我々は PDSketch という新しいドメイン定義言語を提案する。
これにより、ユーザーはトランジションモデルで柔軟にハイレベルな構造を定義できる。
移行モデルの詳細は、トレーニング可能なニューラルネットワークによって満たされる。
論文 参考訳(メタデータ) (2023-03-09T18:54:12Z) - Exploring explicit coarse-grained structure in artificial neural
networks [0.0]
本稿では, ニューラルネットワークの階層的粗粒度構造を用いて, 性能を劣化させることなく, 解釈性を向上させることを提案する。
ひとつはTaylorNetと呼ばれるニューラルネットワークで、入力データから出力結果への一般的なマッピングを直接テイラー級数で近似することを目的としている。
もう1つはデータ蒸留のための新しいセットアップで、入力データセットのマルチレベル抽象化を実行し、新しいデータを生成することができる。
論文 参考訳(メタデータ) (2022-11-03T13:06:37Z) - Learning Augmentation Distributions using Transformed Risk Minimization [47.236227685707526]
本稿では,古典的リスク最小化の拡張として,新しいemphTransformed Risk Minimization(TRM)フレームワークを提案する。
重要な応用として、与えられたクラスの予測器による分類性能を改善するために、学習強化に焦点を当てる。
論文 参考訳(メタデータ) (2021-11-16T02:07:20Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
本稿では,クラスタの位置を保存した新しいものを作成するために,埋め込みを再利用する手法を提案する。
提案アルゴリズムは,新しい項目を埋め込むために$t$-SNEと同じ複雑さを持つ。
論文 参考訳(メタデータ) (2021-09-22T06:45:37Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
一般化ゼロショット学習(英: Generalized Zero-Shot Learning、GZSL)は、学習中に見知らぬクラスが観察できない、見つからないサンプルを認識するために意味情報(属性など)を活用するタスクである。
本稿では,未知のデータ合成を効率よく,効率的に学習するための新しい生成シフト緩和フローフレームワークを提案する。
実験結果から,GSMFlowは従来のゼロショット設定と一般化されたゼロショット設定の両方において,最先端の認識性能を実現することが示された。
論文 参考訳(メタデータ) (2021-07-07T11:43:59Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
本稿では,2つのアイデアに基づいた,強力かつ同変なメッセージパッシングフレームワークを提案する。
まず、各ノードの周囲の局所的コンテキスト行列を学習するために、特徴に加えてノードの1ホット符号化を伝搬する。
次に,メッセージのパラメトリゼーション手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T17:15:16Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。