Interpretable Multi-Task PINN for Emotion Recognition and EDA Prediction
- URL: http://arxiv.org/abs/2505.18169v1
- Date: Wed, 14 May 2025 03:13:51 GMT
- Title: Interpretable Multi-Task PINN for Emotion Recognition and EDA Prediction
- Authors: Nischal Mandal,
- Abstract summary: This study presents a novel Multi-Task Physics-Informed Neural Network (PINN) that performs Electrodermal Activity (EDA) prediction and emotion classification simultaneously.<n>The model integrates psychological self-report features (PANAS and SAM) with a physics-inspired differential equation representing EDA dynamics.<n>The architecture supports dual outputs for both tasks and is trained under a unified multi-task framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and predicting human emotional and physiological states using wearable sensors has important applications in stress monitoring, mental health assessment, and affective computing. This study presents a novel Multi-Task Physics-Informed Neural Network (PINN) that performs Electrodermal Activity (EDA) prediction and emotion classification simultaneously, using the publicly available WESAD dataset. The model integrates psychological self-report features (PANAS and SAM) with a physics-inspired differential equation representing EDA dynamics, enforcing biophysically grounded constraints through a custom loss function. This loss combines EDA regression, emotion classification, and a physics residual term for improved interpretability. The architecture supports dual outputs for both tasks and is trained under a unified multi-task framework. Evaluated using 5-fold cross-validation, the model achieves an average EDA RMSE of 0.0362, Pearson correlation of 0.9919, and F1-score of 94.08 percent. These results outperform classical models such as SVR and XGBoost, as well as ablated variants like emotion-only and EDA-only models. In addition, the learned physical parameters including decay rate (alpha_0), emotional sensitivity (beta), and time scaling (gamma) are interpretable and stable across folds, aligning with known principles of human physiology. This work is the first to introduce a multi-task PINN framework for wearable emotion recognition, offering improved performance, generalizability, and model transparency. The proposed system provides a foundation for future interpretable and multimodal applications in healthcare and human-computer interaction.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - A Novel Loss Function Utilizing Wasserstein Distance to Reduce
Subject-Dependent Noise for Generalizable Models in Affective Computing [0.4818210066519976]
Emotions are an essential part of human behavior that can impact thinking, decision-making, and communication skills.
The ability to accurately monitor and identify emotions can be useful in many human-centered applications such as behavioral training, tracking emotional well-being, and development of human-computer interfaces.
arXiv Detail & Related papers (2023-08-17T01:15:26Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
We propose a hierarchical framework, based on chain regression models, for affective recognition from vocal bursts.
To address the challenge of data sparsity, we also use self-supervised learning (SSL) representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst (A-VB) Challenge 2022 and ranked first in the "TWO'' and "CULTURE" tasks.
arXiv Detail & Related papers (2023-03-14T16:08:45Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A Brief Survey of Machine Learning Methods for Emotion Prediction using
Physiological Data [0.974672460306765]
This paper surveys machine learning methods that deploy smartphone and physiological data to predict emotions in real-time.
We showcase the variability of machine learning methods employed to achieve accurate emotion prediction.
The performance can be improved in future works by considering the following issues.
arXiv Detail & Related papers (2022-01-17T19:46:12Z) - Improving Prediction of Cognitive Performance using Deep Neural Networks
in Sparse Data [2.867517731896504]
We used data from an observational, cohort study, Midlife in the United States (MIDUS) to model executive function and episodic memory measures.
Deep neural network (DNN) models consistently ranked highest in all of the cognitive performance prediction tasks.
arXiv Detail & Related papers (2021-12-28T22:23:08Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Synthesizing Skeletal Motion and Physiological Signals as a Function of
a Virtual Human's Actions and Emotions [10.59409233835301]
We develop for the first time a system consisting of computational models for synchronously skeletal motion, electrocardiogram, blood pressure, respiration, and skin conductance signals.
The proposed framework is modular and allows the flexibility to experiment with different models.
In addition to facilitating ML research for round-the-clock monitoring at a reduced cost, the proposed framework will allow reusability of code and data.
arXiv Detail & Related papers (2021-02-08T21:56:15Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
We propose a deep-learning framework denoted as a dynamic entropy-based pattern learning (DEPL) to abstract informative indicators pertaining to the neurophysiological features among multiple individuals.
DEPL enhanced the capability of representations generated by a deep convolutional neural network by modelling the interdependencies between the cortical locations of dynamical entropy based features.
arXiv Detail & Related papers (2020-09-26T07:22:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.