論文の概要: Discovering and Steering Interpretable Concepts in Large Generative Music Models
- arxiv url: http://arxiv.org/abs/2505.18186v2
- Date: Tue, 30 Sep 2025 00:23:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.003371
- Title: Discovering and Steering Interpretable Concepts in Large Generative Music Models
- Title(参考訳): 大規模生成音楽モデルにおける解釈可能な概念の発見とステアリング
- Authors: Nikhil Singh, Manuel Cherep, Pattie Maes,
- Abstract要約: スパースオートエンコーダ(SAE)を用いた解釈可能な概念発見手法を提案する。
以上の結果から,理論や言語には明確な相違点が欠如していることが判明した。
拡張として、モデル世代をステアリングするためにそのような概念を使用できることを示す。
- 参考スコア(独自算出の注目度): 30.071130311851277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fidelity with which neural networks can now generate content such as music presents a scientific opportunity: these systems appear to have learned implicit theories of such content's structure through statistical learning alone. This offers a potentially new lens on theories of human-generated media. When internal representations align with traditional constructs (e.g. chord progressions in music), they show how such categories can emerge from statistical regularities; when they diverge, they expose limits of existing frameworks and patterns we may have overlooked but that nonetheless carry explanatory power. In this paper, focusing on music generators, we introduce a method for discovering interpretable concepts using sparse autoencoders (SAEs), extracting interpretable features from the residual stream of a transformer model. We make this approach scalable and evaluable using automated labeling and validation pipelines. Our results reveal both familiar musical concepts and coherent but uncodified patterns lacking clear counterparts in theory or language. As an extension, we show such concepts can be used to steer model generations. Beyond improving model transparency, our work provides an empirical tool for uncovering organizing principles that have eluded traditional methods of analysis and synthesis.
- Abstract(参考訳): ニューラルネットワークが音楽などのコンテンツを生成できる忠実さは科学的機会となり、これらのシステムは統計的学習だけでそのようなコンテンツの構造に関する暗黙的な理論を学んだようである。
これは、人為的なメディアの理論に関する新たなレンズを提供する。
内部表現が伝統的な構成物(例えば音楽のコード進行)と整合すると、そのようなカテゴリーが統計的な規則からどのように現れるかを示し、それらが分岐すると、見落とされたかもしれない既存のフレームワークやパターンの限界が明らかになるが、それでも説明力を持っている。
本稿では,音楽ジェネレータに着目したスパースオートエンコーダ(SAE)を用いた解釈可能な概念の発見手法を提案し,変換器モデルの残ストリームから解釈可能な特徴を抽出する。
自動ラベリングとバリデーションパイプラインを使用して、このアプローチをスケーラブルかつ評価可能にします。
この結果から、音楽概念と、理論や言語における明確な相違点を欠いたコヒーレントなパターンの両方が明らかとなった。
拡張として、モデル世代をステアリングするためにそのような概念を使用できることを示す。
私たちの研究は、モデルの透明性の改善以外にも、従来の分析と合成の手法を解明した組織原則を明らかにするための実証的なツールを提供しています。
関連論文リスト
- Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
ニューラルネットワークは、トレーニングデータの規則性を反映した生の集団活動のパターンを示す。
本稿では,ラベルの可利用性と次元性に基づいて,これら新たな実体を抽出する3つの手法を提案する。
私たちの研究は、認知原則と自然主義的データの構造の両方を活用する、解釈可能性の新しい方向性を指し示しています。
論文 参考訳(メタデータ) (2025-05-16T13:49:43Z) - I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
大規模言語モデル (LLM) は、多くの人が知能の形式を示すと結論づけている。
本稿では,潜在離散変数として表現される人間解釈可能な概念に基づいてトークンを生成する新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2025-03-12T01:21:17Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Distilling Symbolic Priors for Concept Learning into Neural Networks [9.915299875869046]
メタラーニングにより,シンボルベイズモデルから事前分布を蒸留することにより,インダクティブバイアスを人工知能ニューラルネットワークでインスタンス化できることを示す。
このアプローチを用いて、短い論理式として表現された概念に対する帰納的バイアスを持つニューラルネットワークを作成する。
論文 参考訳(メタデータ) (2024-02-10T20:06:26Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
本稿では, ニューラルネットワークカーネル(NTK)に基づく理論的手法を提案し, そのメカニズムを解明する。
これらのモデルが勾配降下時の統計的特徴をどのように活用し、最終決定にどのように統合されるかを明らかにする。
自己注意モデルとCNNモデルはn-gramの学習の限界を示すが、乗算モデルはこの領域で優れていると考えられる。
論文 参考訳(メタデータ) (2023-10-25T04:22:40Z) - Deep Generative Models of Music Expectation [2.900810893770134]
本稿では, 拡散モデルを用いて, 最新の深層確率生成モデルを用いて, 音楽入力シーケンスの近似確率を計算することを提案する。
従来の研究とは異なり、ディープニューラルネットワークによってパラメータ化されたこのような生成モデルは、トレーニングセット自体から直接、複雑な非線形特徴を学習することができる。
本研究では,事前学習した拡散モデルが,被測定対象の「ライキング」評価と負の二次的関係を示す音楽的前提値をもたらすことを示す。
論文 参考訳(メタデータ) (2023-10-05T12:25:39Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play
Multi-Character Belief Tracker [72.09076317574238]
ToMは,読解における文字の信念状態を調べるためのプラグアンドプレイ方式である。
ToMは、教師付きベースラインと比較して、配電性能が堅牢でありながら、ゼロオーダー設定でのオフ・ザ・シェルフニューラルネットワーク理論の考え方を強化する。
論文 参考訳(メタデータ) (2023-06-01T17:24:35Z) - Learning Unsupervised Hierarchies of Audio Concepts [13.400413055847084]
コンピュータビジョンでは、正しい抽象化レベルに説明を調整するために概念学習が提案された。
本稿では,概念学習を音楽の領域に適用し,その特異性について述べる。
音声から多数の音楽概念を学習し,それらを階層化し,相互関係を明らかにする手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T16:34:31Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - From Artificial Neural Networks to Deep Learning for Music Generation --
History, Concepts and Trends [0.0]
本稿では,ディープラーニング技術に基づく音楽生成のチュートリアルを提供する。
1980年代後半から、音楽生成のための人工ニューラルネットワークを用いて、いくつかの初期の作品を分析している。
論文 参考訳(メタデータ) (2020-04-07T00:33:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。