Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications
- URL: http://arxiv.org/abs/2505.18194v2
- Date: Fri, 30 May 2025 08:40:41 GMT
- Title: Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications
- Authors: Yubo Peng, Luping Xiang, Bingxin Zhang, Kun Yang,
- Abstract summary: We propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication framework.<n>Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules.<n> evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
- Score: 5.646293779615063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional single-modal sensing systems-based solely on either radio frequency (RF) or visual data-struggle to cope with the demands of complex and dynamic environments. Furthermore, single-device systems are constrained by limited perspectives and insufficient spatial coverage, which impairs their effectiveness in urban or non-line-of-sight scenarios. To overcome these challenges, we propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication (LLM-DiSAC) framework. Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules, working together with an aggregation center to enhance sensing accuracy. First, on sensing devices, LLM-DiSAC develops an RF-vision fusion network (RVFN), which employs specialized feature extractors for RF and visual data, followed by a cross-attention module for effective multimodal integration. Second, a LLM-based semantic transmission network (LSTN) is proposed to enhance communication efficiency, where the LLM-based decoder leverages known channel parameters, such as transceiver distance and signal-to-noise ratio (SNR), to mitigate semantic distortion. Third, at the aggregation center, a transformer-based aggregation model (TRAM) with an adaptive aggregation attention mechanism is developed to fuse distributed features and enhance sensing accuracy. To preserve data privacy, a two-stage distributed learning strategy is introduced, allowing local model training at the device level and centralized aggregation model training using intermediate features. Finally, evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
Related papers
- Effective Feature Selection for Predicting Spreading Factor with ML in Large LoRaWAN-based Mobile IoT Networks [0.5749787074942512]
This paper addresses the challenge of predicting the spreading factor (SF) in LoRaWAN networks using machine learning (ML) techniques.<n>We evaluated ML model performance across a large publicly available dataset to explore the best feature across key LoRaWAN features.<n>The combination of RSSI and SNR was identified as the best feature set.
arXiv Detail & Related papers (2025-03-12T08:58:28Z) - Semantic-Aware Resource Management for C-V2X Platooning via Multi-Agent Reinforcement Learning [41.8826976666953]
We introduce semantic communication into a cellular vehicle-to-everything (C-V2X)-based autonomous vehicle platoon system.<n>The paper proposes a distributed semantic-aware multi-modal resource allocation (SAMRA) algorithm based on multi-agent reinforcement learning (MARL), referred to as SAMRAMARL.
arXiv Detail & Related papers (2024-11-07T12:55:35Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Device Sampling and Resource Optimization for Federated Learning in Cooperative Edge Networks [17.637761046608]
Federated learning (FedL) distributes machine learning (ML) across worker devices by having them train local models that are periodically aggregated by a server.
FedL ignores two important characteristics of contemporary wireless networks: (i) the network may contain heterogeneous communication/computation resources, and (ii) there may be significant overlaps in devices' local data distributions.
We develop a novel optimization methodology that jointly accounts for these factors via intelligent device sampling complemented by device-to-device (D2D) offloading.
arXiv Detail & Related papers (2023-11-07T21:17:59Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.