Semantic-Aware Resource Management for C-V2X Platooning via Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2411.04672v2
- Date: Mon, 26 May 2025 12:55:04 GMT
- Title: Semantic-Aware Resource Management for C-V2X Platooning via Multi-Agent Reinforcement Learning
- Authors: Wenjun Zhang, Qiong Wu, Pingyi Fan, Kezhi Wang, Nan Cheng, Wen Chen, Khaled B. Letaief,
- Abstract summary: We introduce semantic communication into a cellular vehicle-to-everything (C-V2X)-based autonomous vehicle platoon system.<n>The paper proposes a distributed semantic-aware multi-modal resource allocation (SAMRA) algorithm based on multi-agent reinforcement learning (MARL), referred to as SAMRAMARL.
- Score: 41.8826976666953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication transmits the extracted features of information rather than raw data, significantly reducing redundancy, which is crucial for addressing spectrum and energy challenges in 6G networks. In this paper, we introduce semantic communication into a cellular vehicle-to-everything (C-V2X)- based autonomous vehicle platoon system for the first time, aiming to achieve efficient management of communication resources in a dynamic environment. Firstly, we construct a mathematical model for semantic communication in platoon systems, in which the DeepSC model and MU-DeepSC model are used to semantically encode and decode unimodal and multi-modal data, respectively. Then, we propose the quality of experience (QoE) metric based on semantic similarity and semantic rate. Meanwhile, we consider the success rate of semantic information transmission (SRS) metric to ensure the fairness of channel resource allocation. Next, the optimization problem is posed with the aim of maximizing the QoE in vehicle-to-vehicle (V2V) links while improving SRS. To solve this mixed integer nonlinear programming problem (MINLP) and adapt to time-varying channel conditions, the paper proposes a distributed semantic-aware multi-modal resource allocation (SAMRA) algorithm based on multi-agent reinforcement learning (MARL), referred to as SAMRAMARL. The algorithm can dynamically allocate channels and power and determine semantic symbol length based on the contextual importance of the transmitted information, ensuring efficient resource utilization. Finally, extensive simulations have demonstrated that SAMRAMARL outperforms existing methods, achieving significant gains in QoE, SRS, and communication delay in C-V2X platooning scenarios.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications [5.646293779615063]
We propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication framework.<n>Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules.<n> evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
arXiv Detail & Related papers (2025-05-20T08:00:00Z) - Modeling and Performance Analysis for Semantic Communications Based on Empirical Results [53.805458017074294]
We propose an Alpha-Beta-Gamma (ABG) formula to model the relationship between the end-to-end measurement and SNR.<n>For image reconstruction tasks, the proposed ABG formula can well fit the commonly used DL networks, such as SCUNet, and Vision Transformer.<n>To the best of our knowledge, this is the first theoretical expression between end-to-end performance metrics and SNR for semantic communications.
arXiv Detail & Related papers (2025-04-29T06:07:50Z) - SIMAC: A Semantic-Driven Integrated Multimodal Sensing And Communication Framework [22.924064428134507]
Single-modality sensing faces limitations in accuracy and capability, and its decoupled implementation with communication systems increases latency.<n>We propose a semantic-driven integrated multimodal sensing and communication framework to overcome these challenges.
arXiv Detail & Related papers (2025-03-11T01:04:42Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks [43.443526528832145]
We propose a RIS-assisted internet of vehicles (IoV) network, considering the vehicle-to-everything (V2X) communication method.
In order to improve the timeliness of vehicle-to-infrastructure (V2I) links and the stability of vehicle-to-vehicle (V2V) links, we introduce the age of information (AoI) model and the payload transmission probability model.
arXiv Detail & Related papers (2024-06-17T06:16:07Z) - Semantic-Aware Spectrum Sharing in Internet of Vehicles Based on Deep Reinforcement Learning [43.75763512107076]
We propose a semantic-aware spectrum sharing algorithm (SSS) based on the deep reinforcement learning (DRL) soft actor-critic (SAC) approach.
We redefine metrics for semantic information in V2V and V2I spectrum sharing in IoV environments, introducing high-speed semantic spectrum efficiency (HSSE) and semantic transmission rate (HSR)
This optimization encompasses the optimal link of V2V and V2I sharing strategies, the transmission power for vehicles sending semantic information and the length of transmitted semantic symbols.
arXiv Detail & Related papers (2024-06-11T12:42:41Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
This paper investigates the quality of service for semantic communication networks, including the semantic quantization efficiency (SQE) and transmission latency.
A problem maximizing the overall effective SC-QoS is formulated by jointly the transmit beamforming the base station, the bits semantic representation the subchannel assignment, and the semantic resource allocation.
Our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes.
arXiv Detail & Related papers (2023-12-02T09:12:12Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
This paper presents a LiDAR-based end-to-end autonomous driving method with Vehicle-to-Everything (V2X) communication integration.
The proposed method aims to handle imperfect partial observations by fusing the onboard LiDAR sensor and V2X communication data.
arXiv Detail & Related papers (2023-09-26T20:26:03Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
We propose a Large AI Model-based Multimodal SC (LAMMSC) framework.
We first present the Conditional-based Multimodal Alignment (MMA) that enables the transformation between multimodal and unimodal data.
Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery.
Finally, we apply the Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information.
arXiv Detail & Related papers (2023-09-03T19:24:34Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Wireless Resource Management in Intelligent Semantic Communication
Networks [15.613654766345702]
We address the user association (UA) and bandwidth allocation problems in an ISC-enabled heterogeneous network (ISC-HetNet)
We propose a two-stage solution, including a programming method to obtain an objective, and a algorithm in the second stage to reach the optimality of UA and BA.
arXiv Detail & Related papers (2022-02-15T18:28:28Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Transfer Learning in Multi-Agent Reinforcement Learning with Double
Q-Networks for Distributed Resource Sharing in V2X Communication [24.442174952832108]
This paper addresses the problem of decentralized spectrum sharing in vehicle-to-everything (V2X) communication networks.
The aim is to provide resource-efficient coexistence of vehicle-to-infrastructure(V2I) and vehicle-to-vehicle(V2V) links.
arXiv Detail & Related papers (2021-07-13T15:50:10Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Multi-Agent Reinforcement Learning for Channel Assignment and Power
Allocation in Platoon-Based C-V2X Systems [15.511438222357489]
We consider the problem of joint channel assignment and power allocation in underlaid cellular vehicular-to-everything (C-V2X) systems.
Our proposed distributed resource allocation algorithm provides a close performance compared to that of the well-known exhaustive search algorithm.
arXiv Detail & Related papers (2020-11-09T16:55:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.