Data Mining-Based Techniques for Software Fault Localization
- URL: http://arxiv.org/abs/2505.18216v1
- Date: Fri, 23 May 2025 07:35:10 GMT
- Title: Data Mining-Based Techniques for Software Fault Localization
- Authors: Peggy Cellier, Mireille Ducassé, Sébastien Ferré, Olivier Ridoux, W. Eric Wong,
- Abstract summary: This chapter illustrates the basic concepts of fault localization using a data mining technique.<n>It utilizes the Trityp program to illustrate the general method.
- Score: 1.0555644626138598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter illustrates the basic concepts of fault localization using a data mining technique. It utilizes the Trityp program to illustrate the general method. Formal concept analysis and association rule are two well-known methods for symbolic data mining. In their original inception, they both consider data in the form of an object-attribute table. In their original inception, they both consider data in the form of an object-attribute table. The chapter considers a debugging process in which a program is tested against different test cases. Two attributes, PASS and FAIL, represent the issue of the test case. The chapter extends the analysis of data mining for fault localization for the multiple fault situations. It addresses how data mining can be further applied to fault localization for GUI components. Unlike traditional software, GUI test cases are usually event sequences, and each individual event has a unique corresponding event handler.
Related papers
- Fact Checking Beyond Training Set [64.88575826304024]
We show that the retriever-reader suffers from performance deterioration when it is trained on labeled data from one domain and used in another domain.
We propose an adversarial algorithm to make the retriever component robust against distribution shift.
We then construct eight fact checking scenarios from these datasets, and compare our model to a set of strong baseline models.
arXiv Detail & Related papers (2024-03-27T15:15:14Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - A Framework for Extracting and Encoding Features from Object-Centric
Event Data [0.36748639131154304]
We introduce a framework for extracting and encoding features from object-centric event data.
We calculate features on the object-centric event data, leading to accurate measures.
We use explainable AI in the prediction use cases to show the utility of both the object-centric features and the structure of the sequential and graph-based encoding.
arXiv Detail & Related papers (2022-09-02T16:49:47Z) - Defining Cases and Variants for Object-Centric Event Data [0.36748639131154304]
We introduce the case concept for object-centric process mining: process executions.
We provide techniques to extract process executions.
We show the most frequent object-centric variants of a real-life event log.
arXiv Detail & Related papers (2022-08-05T15:33:03Z) - Accessing and Interpreting OPC UA Event Traces based on Semantic Process
Descriptions [69.9674326582747]
This paper proposes an approach to access a production systems' event data based on the event data's context.
The approach extracts filtered event logs from a database system by combining: 1) a semantic model of a production system's hierarchical structure, 2) a formalized process description and 3) an OPC UA information model.
arXiv Detail & Related papers (2022-07-25T15:13:44Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
Deep neural networks (DNNs) are usually trained on a closed set of semantic classes.
They are ill-equipped to handle previously-unseen objects.
detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving.
arXiv Detail & Related papers (2021-04-30T07:58:19Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
We present S3M -- the first approach to computing stack trace similarity based on deep learning.
It is based on a biLSTM encoder and a fully-connected classifier to compute similarity.
Our experiments demonstrate the superiority of our approach over the state-of-the-art on both open-sourced data and a private JetBrains dataset.
arXiv Detail & Related papers (2021-03-18T21:10:41Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years.
We propose a background-agnostic framework that learns from training videos containing only normal events.
arXiv Detail & Related papers (2020-08-27T18:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.