Small Models, Smarter Learning: The Power of Joint Task Training
- URL: http://arxiv.org/abs/2505.18369v1
- Date: Fri, 23 May 2025 20:56:37 GMT
- Title: Small Models, Smarter Learning: The Power of Joint Task Training
- Authors: Csaba Both, Benjamin Hoover, Hendrik Strobelt, Dmitry Krotov, Daniel Karl I. Weidele, Mauro Martino, Nima Dehmamy,
- Abstract summary: Our study focuses on the ListOps dataset, which consists of nested mathematical operations.<n>We observe that sum modulo n is the hardest to learn.<n>We show that joint training not only improves performance but also leads to qualitatively different model behavior.
- Score: 23.91574901740084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of a model to learn a task depends strongly on both the task difficulty and the model size. We aim to understand how task difficulty relates to the minimum number of parameters required for learning specific tasks in small transformer models. Our study focuses on the ListOps dataset, which consists of nested mathematical operations. We gradually increase task difficulty by introducing new operations or combinations of operations into the training data. We observe that sum modulo n is the hardest to learn. Curiously, when combined with other operations such as maximum and median, the sum operation becomes easier to learn and requires fewer parameters. We show that joint training not only improves performance but also leads to qualitatively different model behavior. We show evidence that models trained only on SUM might be memorizing and fail to capture the number structure in the embeddings. In contrast, models trained on a mixture of SUM and other operations exhibit number-like representations in the embedding space, and a strong ability to distinguish parity. Furthermore, the SUM-only model relies more heavily on its feedforward layers, while the jointly trained model activates the attention mechanism more. Finally, we show that learning pure SUM can be induced in models below the learning threshold of pure SUM, by pretraining them on MAX+MED. Our findings indicate that emergent abilities in language models depend not only on model size, but also the training curriculum.
Related papers
- Too Big to Think: Capacity, Memorization, and Generalization in Pre-Trained Transformers [0.0]
We investigate the relationship between memorization and generalization in large language models.<n>Small models extrapolate to unseen arithmetic cases but fail to memorize facts, while larger models memorize but fail to extrapolate.<n>Findings suggest that pre-training may intrinsically favor one learning mode over the other.
arXiv Detail & Related papers (2025-06-10T14:49:33Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.<n>We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.<n>Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning [62.78292142632335]
Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones.<n>Existing work seeks to utilize lightweight components to adjust the model.<n>We propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge.
arXiv Detail & Related papers (2024-12-12T16:57:20Z) - Cross-model Control: Improving Multiple Large Language Models in One-time Training [34.98931804630706]
Cross-model Control (CMC) is a method that improves multiple large language models in one-time training.
Based on this insight, we incorporate a tiny language model with a minimal number of parameters.
We propose a novel token mapping strategy named PM-MinED to make this tiny language model applicable to models with different vocabularies.
arXiv Detail & Related papers (2024-10-23T06:52:09Z) - An exactly solvable model for emergence and scaling laws in the multitask sparse parity problem [2.598133279943607]
We present a framework where each new ability (a skill) is represented as a basis function.
We find analytic expressions for the emergence of new skills, as well as for scaling laws of the loss with training time, data size, model size, and optimal compute.
Our simple model captures, using a single fit parameter, the sigmoidal emergence of multiple new skills as training time, data size or model size increases in the neural network.
arXiv Detail & Related papers (2024-04-26T17:45:32Z) - How does Multi-Task Training Affect Transformer In-Context Capabilities? Investigations with Function Classes [6.652837942112205]
Large language models (LLM) have recently shown the extraordinary ability to perform unseen tasks based on few-shot examples provided as text.
We propose several effective curriculum learning strategies that allow ICL models to achieve higher data efficiency and more stable convergence.
Our experiments reveal that ICL models can effectively learn difficult tasks by training on progressively harder tasks while mixing in prior tasks, denoted as mixed curriculum in this work.
arXiv Detail & Related papers (2024-04-04T16:15:23Z) - Pretraining Data Mixtures Enable Narrow Model Selection Capabilities in
Transformer Models [9.340409961107955]
Transformer models have the remarkable ability to perform in-context learning (ICL)
We study how effectively transformers can bridge between their pretraining data mixture.
Our results highlight that the impressive ICL abilities of high-capacity sequence models may be more closely tied to the coverage of their pretraining data mixtures than inductive biases.
arXiv Detail & Related papers (2023-11-01T21:41:08Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
Scaling up language models has led to unprecedented performance gains.
How do language models of different sizes learn during pre-training?
Why do larger language models demonstrate more desirable behaviors?
arXiv Detail & Related papers (2022-12-19T19:16:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.