How We Won the ISLES'24 Challenge by Preprocessing
- URL: http://arxiv.org/abs/2505.18424v2
- Date: Wed, 28 May 2025 22:02:21 GMT
- Title: How We Won the ISLES'24 Challenge by Preprocessing
- Authors: Tianyi Ren, Juampablo E. Heras Rivera, Hitender Oswal, Yutong Pan, William Henry, Sophie Walters, Mehmet Kurt,
- Abstract summary: Supervised deep learning methods have emerged as the leading solution for stroke lesion segmentation.<n>The ISLES'24 challenge addresses this need by providing longitudinal stroke imaging data.<n>Our winning solution shows that a carefully designed preprocessing pipeline is beneficial for accurate segmentation.
- Score: 0.1675245825272646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stroke is among the top three causes of death worldwide, and accurate identification of stroke lesion boundaries is critical for diagnosis and treatment. Supervised deep learning methods have emerged as the leading solution for stroke lesion segmentation but require large, diverse, and annotated datasets. The ISLES'24 challenge addresses this need by providing longitudinal stroke imaging data, including CT scans taken on arrival to the hospital and follow-up MRI taken 2-9 days from initial arrival, with annotations derived from follow-up MRI. Importantly, models submitted to the ISLES'24 challenge are evaluated using only CT inputs, requiring prediction of lesion progression that may not be visible in CT scans for segmentation. Our winning solution shows that a carefully designed preprocessing pipeline including deep-learning-based skull stripping and custom intensity windowing is beneficial for accurate segmentation. Combined with a standard large residual nnU-Net architecture for segmentation, this approach achieves a mean test Dice of 28.5 with a standard deviation of 21.27.
Related papers
- Benchmark of Segmentation Techniques for Pelvic Fracture in CT and X-ray: Summary of the PENGWIN 2024 Challenge [20.058385954540082]
The PENGWIN challenge aimed to advance automated fracture segmentation.<n>The top-performing CT algorithm achieved an average fragment-wise intersection over union (IoU) of 0.930, demonstrating satisfactory accuracy.<n>The best algorithm attained an IoU of 0.774, highlighting the greater challenges posed by overlapping anatomical structures.
arXiv Detail & Related papers (2025-04-03T08:19:36Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - ISLES 2024: The first longitudinal multimodal multi-center real-world dataset in (sub-)acute stroke [2.7919032539697444]
Stroke remains a leading cause of global morbidity and mortality, placing a heavy socioeconomic burden.
To develop machine learning algorithms that can extract meaningful and reproducible models of brain function from stroke images.
Our dataset is the first to offer comprehensive longitudinal stroke data, including acute CT imaging with angiography and perfusion, follow-up MRI at 2-9 days, and acute and longitudinal clinical data up to a three-month outcome.
arXiv Detail & Related papers (2024-08-20T18:59:52Z) - ISLES'24: Improving final infarct prediction in ischemic stroke using multimodal imaging and clinical data [3.2816454618159008]
This work presents the ISLES'24 challenge, which addresses final post-treatment stroke infarct prediction from pre-interventional acute stroke imaging and clinical data.
The contributions of this work are two-fold: first, we introduce a standardized benchmarking of final stroke infarct segmentation algorithms through the ISLES'24 challenge; second, we provide insights into infarct segmentation using multimodal imaging and clinical data strategies.
arXiv Detail & Related papers (2024-08-20T16:01:05Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
Fetoscopic laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS)
The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination.
Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking.
Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fet
arXiv Detail & Related papers (2022-06-24T23:44:42Z) - ISLES 2022: A multi-center magnetic resonance imaging stroke lesion
segmentation dataset [36.278933802685316]
This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location.
It is split into a training dataset of n=250 and a test dataset of n=150.
The test dataset will be used for model validation only and will not be released to the public.
arXiv Detail & Related papers (2022-06-14T08:54:40Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.