MRGAgents: A Multi-Agent Framework for Improved Medical Report Generation with Med-LVLMs
- URL: http://arxiv.org/abs/2505.18530v1
- Date: Sat, 24 May 2025 05:49:42 GMT
- Title: MRGAgents: A Multi-Agent Framework for Improved Medical Report Generation with Med-LVLMs
- Authors: Pengyu Wang, Shuchang Ye, Usman Naseem, Jinman Kim,
- Abstract summary: Medical Large Vision-Language Models (Med-LVLMs) have been widely adopted for medical report generation.<n>MRGAgents is a novel multi-agent framework that fine-tunes specialized agents for different disease categories.<n>Our experiments demonstrate that MRGAgents outperformed the state-of-the-art, improving both report comprehensiveness and diagnostic utility.
- Score: 13.821075482061952
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical Large Vision-Language Models (Med-LVLMs) have been widely adopted for medical report generation. Despite Med-LVLMs producing state-of-the-art performance, they exhibit a bias toward predicting all findings as normal, leading to reports that overlook critical abnormalities. Furthermore, these models often fail to provide comprehensive descriptions of radiologically relevant regions necessary for accurate diagnosis. To address these challenges, we proposeMedical Report Generation Agents (MRGAgents), a novel multi-agent framework that fine-tunes specialized agents for different disease categories. By curating subsets of the IU X-ray and MIMIC-CXR datasets to train disease-specific agents, MRGAgents generates reports that more effectively balance normal and abnormal findings while ensuring a comprehensive description of clinically relevant regions. Our experiments demonstrate that MRGAgents outperformed the state-of-the-art, improving both report comprehensiveness and diagnostic utility.
Related papers
- MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
Radiology report generation (RRG) aims to automatically produce diagnostic reports from medical images.<n>We propose a multimodal multi-agent framework for RRG that aligns with the stepwise clinical reasoning workflow.
arXiv Detail & Related papers (2025-05-14T20:28:04Z) - Any-to-Any Vision-Language Model for Multimodal X-ray Imaging and Radiological Report Generation [26.589728923739596]
We introduce a framework specifically designed for multimodal medical data generation.<n>By enabling the generation of multi-view chest X-rays and their associated clinical report, it bridges the gap between general-purpose vision-language models and the specialized requirements of healthcare.<n>Our framework achieves comparable or even superior performance compared to real data on downstream disease classification tasks.
arXiv Detail & Related papers (2025-05-02T08:07:24Z) - MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.<n>This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.<n>Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - RareAgents: Advancing Rare Disease Care through LLM-Empowered Multi-disciplinary Team [13.330661181655493]
Rare diseases collectively impact around 300 million people worldwide due to the vast number of diseases.<n>Recent agents powered by large language models (LLMs) have demonstrated notable applications across various domains.<n>RareAgents integrates advanced Multidisciplinary Team (MDT) coordination, memory mechanisms, and medical tools utilization, leveraging Llama-3.1-8B/70B as the base model.
arXiv Detail & Related papers (2024-12-17T02:22:24Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.<n>Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.<n>We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - CoMT: Chain-of-Medical-Thought Reduces Hallucination in Medical Report Generation [20.59298361626719]
We propose a chain-of-medical-thought approach (CoMT) to mitigate hallucinations in medical report generation.<n>CoMT intends to imitate the cognitive process of human doctors by decomposing diagnostic procedures.
arXiv Detail & Related papers (2024-06-17T12:03:32Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.