Reinforcement Fine-Tuning Powers Reasoning Capability of Multimodal Large Language Models
- URL: http://arxiv.org/abs/2505.18536v1
- Date: Sat, 24 May 2025 06:01:48 GMT
- Title: Reinforcement Fine-Tuning Powers Reasoning Capability of Multimodal Large Language Models
- Authors: Haoyuan Sun, Jiaqi Wu, Bo Xia, Yifu Luo, Yifei Zhao, Kai Qin, Xufei Lv, Tiantian Zhang, Yongzhe Chang, Xueqian Wang,
- Abstract summary: Reinforcement fine-tuning (RFT) has demonstrated significant potential in enhancing the reasoning capability of large language models (LLMs)<n>In this paper, we argue that RFT powers the reasoning capability of multimodal large language models (MLLMs)
- Score: 10.257917779370233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standing in 2025, at a critical juncture in the pursuit of Artificial General Intelligence (AGI), reinforcement fine-tuning (RFT) has demonstrated significant potential in enhancing the reasoning capability of large language models (LLMs) and has led to the development of cutting-edge AI models such as OpenAI-o1 and DeepSeek-R1. Moreover, the efficient application of RFT to enhance the reasoning capability of multimodal large language models (MLLMs) has attracted widespread attention from the community. In this position paper, we argue that reinforcement fine-tuning powers the reasoning capability of multimodal large language models. To begin with, we provide a detailed introduction to the fundamental background knowledge that researchers interested in this field should be familiar with. Furthermore, we meticulously summarize the improvements of RFT in powering reasoning capability of MLLMs into five key points: diverse modalities, diverse tasks and domains, better training algorithms, abundant benchmarks and thriving engineering frameworks. Finally, we propose five promising directions for future research that the community might consider. We hope that this position paper will provide valuable insights to the community at this pivotal stage in the advancement toward AGI. Summary of works done on RFT for MLLMs is available at https://github.com/Sun-Haoyuan23/Awesome-RL-based-Reasoning-MLLMs.
Related papers
- MiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization [74.04867639197445]
MiroMind-M1 is a set of fully open-source RLMs built on the Qwen-2.5-based benchmarks.<n>Our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems.
arXiv Detail & Related papers (2025-07-19T16:21:23Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains.<n>We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc.
arXiv Detail & Related papers (2025-05-20T17:41:33Z) - On Path to Multimodal Generalist: General-Level and General-Bench [153.9720740167528]
This project introduces General-Level, an evaluation framework that defines 5-scale levels of MLLM performance and generality.<n>At the core of the framework is the concept of Synergy, which measures whether models maintain consistent capabilities across comprehension and generation.<n>The evaluation results that involve over 100 existing state-of-the-art MLLMs uncover the capability rankings of generalists.
arXiv Detail & Related papers (2025-05-07T17:59:32Z) - Reinforced MLLM: A Survey on RL-Based Reasoning in Multimodal Large Language Models [22.796496516709514]
This paper provides a systematic review of recent advances in reinforcement learning (RL)-based reasoning for Multimodal Large Language Models (MLLMs)<n>We highlight two main RL paradigms, value-model-free and value-model-based methods, and analyze how RL enhances reasoning abilities by optimizing reasoning trajectories and aligning multimodal information.<n>We provide an extensive overview of benchmark datasets, evaluation protocols, and current limitations, and propose future research directions to address challenges such as sparse rewards, inefficient cross-modal reasoning, and real-world deployment constraints.
arXiv Detail & Related papers (2025-04-30T03:14:28Z) - OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning [29.053899071144976]
We propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks.<n>Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy.<n> GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation.
arXiv Detail & Related papers (2025-03-20T12:22:18Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI)<n>This paper explores potential areas where statisticians can make important contributions to the development of LLMs.<n>We focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation.
arXiv Detail & Related papers (2025-02-25T03:40:36Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.<n>This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Chain-of-Thought Hub: A Continuous Effort to Measure Large Language
Models' Reasoning Performance [35.38549845444575]
Chain-of-Thought Hub is an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
arXiv Detail & Related papers (2023-05-26T23:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.