Diffusion Blend: Inference-Time Multi-Preference Alignment for Diffusion Models
- URL: http://arxiv.org/abs/2505.18547v1
- Date: Sat, 24 May 2025 06:27:55 GMT
- Title: Diffusion Blend: Inference-Time Multi-Preference Alignment for Diffusion Models
- Authors: Min Cheng, Fatemeh Doudi, Dileep Kalathil, Mohammad Ghavamzadeh, Panganamala R. Kumar,
- Abstract summary: Diffusion Blend is a novel approach to solve inference-time multi-preference alignment.<n>We instantiate this approach with two algorithms: DB-MPA for multi-reward alignment and DB-KLA for KL regularization control.
- Score: 25.59542599768357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) algorithms have been used recently to align diffusion models with downstream objectives such as aesthetic quality and text-image consistency by fine-tuning them to maximize a single reward function under a fixed KL regularization. However, this approach is inherently restrictive in practice, where alignment must balance multiple, often conflicting objectives. Moreover, user preferences vary across prompts, individuals, and deployment contexts, with varying tolerances for deviation from a pre-trained base model. We address the problem of inference-time multi-preference alignment: given a set of basis reward functions and a reference KL regularization strength, can we design a fine-tuning procedure so that, at inference time, it can generate images aligned with any user-specified linear combination of rewards and regularization, without requiring additional fine-tuning? We propose Diffusion Blend, a novel approach to solve inference-time multi-preference alignment by blending backward diffusion processes associated with fine-tuned models, and we instantiate this approach with two algorithms: DB-MPA for multi-reward alignment and DB-KLA for KL regularization control. Extensive experiments show that Diffusion Blend algorithms consistently outperform relevant baselines and closely match or exceed the performance of individually fine-tuned models, enabling efficient, user-driven alignment at inference-time. The code is available at https://github.com/bluewoods127/DB-2025}{github.com/bluewoods127/DB-2025.
Related papers
- Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
Federated learning (FL) enables collaborative model training across distributed edge devices while preserving data privacy, and typically operates in a round-based synchronous manner.<n>We propose ADEL-FL, a novel framework that jointly optimize per-round deadlines and user-specific batch sizes for layer-wise aggregation.
arXiv Detail & Related papers (2025-05-29T19:59:18Z) - DiffPO: Diffusion-styled Preference Optimization for Efficient Inference-Time Alignment of Large Language Models [50.32663816994459]
Diffusion-styled Preference Optimization (model) provides an efficient and policy-agnostic solution for aligning LLMs with humans.<n>modelavoids the time latency associated with token-level generation.<n>Experiments on AlpacaEval 2, MT-bench, and HH-RLHF demonstrate that modelachieves superior alignment performance across various settings.
arXiv Detail & Related papers (2025-03-06T09:21:54Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.<n>CaPO incorporates the general preference from multiple reward models without human annotated data.<n> Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Margin-aware Preference Optimization for Aligning Diffusion Models without Reference [19.397326645617422]
This paper focuses on the alignment of recent text-to-image diffusion models, such as Stable Diffusion XL (SDXL)
We propose a novel and memory-friendly preference alignment method for diffusion models that does not depend on any reference model, coined margin-aware preference optimization (MaPO)
MaPO jointly maximizes the likelihood margin between the preferred and dispreferred image sets and the likelihood of the preferred sets, simultaneously learning general stylistic features and preferences.
arXiv Detail & Related papers (2024-06-10T16:14:45Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
We introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context.
RiC only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time.
arXiv Detail & Related papers (2024-02-15T18:58:31Z) - Decoding-time Realignment of Language Models [44.54462397717971]
We propose a simple method to explore and evaluate different regularization strengths in aligned models without retraining.
DeRa enables control over the degree of alignment, allowing users to smoothly transition between unaligned and aligned models.
arXiv Detail & Related papers (2024-02-05T13:31:28Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.