Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
- URL: http://arxiv.org/abs/2505.18565v3
- Date: Mon, 04 Aug 2025 20:54:46 GMT
- Title: Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
- Authors: Afrah Farea, Saiful Khan, Reza Daryani, Emre Cenk Ersan, Mustafa Serdar Celebi,
- Abstract summary: We introduce neural network architectures that combine physics-informed neural networks (PINNs) with the immersed boundary method (IBM) to solve fluid-structure interaction (FSI) problems.<n>Our approach features two distinct architectures: a Single-FSI network with a unified parameter space, and an innovative Eulerian-Lagrangian network that maintains separate parameter spaces for fluid and structure domains.
- Score: 0.5991851254194096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce neural network architectures that combine physics-informed neural networks (PINNs) with the immersed boundary method (IBM) to solve fluid-structure interaction (FSI) problems. Our approach features two distinct architectures: a Single-FSI network with a unified parameter space, and an innovative Eulerian-Lagrangian network that maintains separate parameter spaces for fluid and structure domains. We study each architecture using standard Tanh and adaptive B-spline activation functions. Empirical studies on a 2D cavity flow problem involving a moving solid structure show that the Eulerian-Lagrangian architecture performs significantly better. The adaptive B-spline activation further enhances accuracy by providing locality-aware representation near boundaries. While our methodology shows promising results in predicting the velocity field, pressure recovery remains challenging due to the absence of explicit force-coupling constraints in the current formulation. Our findings underscore the importance of domain-specific architectural design and adaptive activation functions for modeling FSI problems within the PINN framework.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Improving hp-Variational Physics-Informed Neural Networks for Steady-State Convection-Dominated Problems [4.0974219394860505]
This paper studies two extensions of applying hp-variational physics-informed neural networks, more precisely the FastVPINNs framework, to convection-dominated convection-diffusion-reaction problems.
First, a term in the spirit of a SUPG stabilization is included in the loss functional and a network architecture is proposed that predicts spatially varying stabilization parameters.
The second novelty is the proposal of a network architecture that learns good parameters for a class of indicator functions.
arXiv Detail & Related papers (2024-11-14T10:21:41Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs)
This paper reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations)
arXiv Detail & Related papers (2024-09-17T06:00:18Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Structured Neural Networks for Density Estimation and Causal Inference [15.63518195860946]
Injecting structure into neural networks enables learning functions that satisfy invariances with respect to subsets of inputs.
We propose the Structured Neural Network (StrNN), which injects structure through masking pathways in a neural network.
arXiv Detail & Related papers (2023-11-03T20:15:05Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Effects of boundary conditions in fully convolutional networks for
learning spatio-temporal dynamics [0.0]
Several strategies to impose boundary conditions are investigated in this paper.
The choice of the optimal padding strategy is directly linked to the data semantics.
The inclusion of additional input spatial context or explicit physics-based rules allows a better handling of boundaries in particular for large number of recurrences.
arXiv Detail & Related papers (2021-06-21T14:58:41Z) - Learning Interpretable Models for Coupled Networks Under Domain
Constraints [8.308385006727702]
We investigate the idea of coupled networks by focusing on interactions between structural edges and functional edges of brain networks.
We propose a novel formulation to place hard network constraints on the noise term while estimating interactions.
We validate our method on multishell diffusion and task-evoked fMRI datasets from the Human Connectome Project.
arXiv Detail & Related papers (2021-04-19T06:23:31Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.