Removal of Hallucination on Hallucination: Debate-Augmented RAG
- URL: http://arxiv.org/abs/2505.18581v1
- Date: Sat, 24 May 2025 08:15:22 GMT
- Title: Removal of Hallucination on Hallucination: Debate-Augmented RAG
- Authors: Wentao Hu, Wengyu Zhang, Yiyang Jiang, Chen Jason Zhang, Xiaoyong Wei, Qing Li,
- Abstract summary: Debate-Augmented RAG (DRAG) is a training-free framework that integrates Multi-Agent Debate (MAD) mechanisms into both retrieval and generation stages.<n>In retrieval, DRAG employs structured debates among proponents, opponents, and judges to refine retrieval quality and ensure factual reliability.<n>In generation, DRAG introduces asymmetric information roles and adversarial debates, enhancing reasoning robustness and mitigating factual inconsistencies.
- Score: 10.501398822864363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external knowledge, yet it introduces a critical issue: erroneous or biased retrieval can mislead generation, compounding hallucinations, a phenomenon we term Hallucination on Hallucination. To address this, we propose Debate-Augmented RAG (DRAG), a training-free framework that integrates Multi-Agent Debate (MAD) mechanisms into both retrieval and generation stages. In retrieval, DRAG employs structured debates among proponents, opponents, and judges to refine retrieval quality and ensure factual reliability. In generation, DRAG introduces asymmetric information roles and adversarial debates, enhancing reasoning robustness and mitigating factual inconsistencies. Evaluations across multiple tasks demonstrate that DRAG improves retrieval reliability, reduces RAG-induced hallucinations, and significantly enhances overall factual accuracy. Our code is available at https://github.com/Huenao/Debate-Augmented-RAG.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - Detection and Mitigation of Hallucination in Large Reasoning Models: A Mechanistic Perspective [11.013059864022667]
Reasoning Hallucinations are logically coherent but factually incorrect reasoning traces.<n>These errors are embedded within structured reasoning, making them more difficult to detect and potentially more harmful.<n>We propose the Reasoning Score, which quantifies the depth of reasoning by measuring the divergence between logits.<n>We also introduce GRPO-R, an enhanced reinforcement learning algorithm that incorporates step-level deep reasoning rewards via potential-based shaping.
arXiv Detail & Related papers (2025-05-19T09:16:40Z) - HalluLens: LLM Hallucination Benchmark [49.170128733508335]
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination"<n>This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks.
arXiv Detail & Related papers (2025-04-24T13:40:27Z) - ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Interpretability [27.325766792146936]
hallucinations caused by insufficient parametric (internal) knowledge.<n>Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge.<n>We propose ReDeEP, a novel method that detects hallucinations by decoupling LLM's utilization of external context and parametric knowledge.
arXiv Detail & Related papers (2024-10-15T09:02:09Z) - A Cause-Effect Look at Alleviating Hallucination of Knowledge-grounded Dialogue Generation [51.53917938874146]
We propose a possible solution for alleviating the hallucination in KGD by exploiting the dialogue-knowledge interaction.
Experimental results of our example implementation show that this method can reduce hallucination without disrupting other dialogue performance.
arXiv Detail & Related papers (2024-04-04T14:45:26Z) - RAGged Edges: The Double-Edged Sword of Retrieval-Augmented Chatbots [6.893551641325889]
ChatGPT's tendency to hallucinate -- generate plausible but false information -- poses a significant challenge.
This paper explores how Retrieval-Augmented Generation can counter hallucinations by integrating external knowledge with prompts.
Our results show that RAG increases accuracy in some cases, but can still be misled when prompts directly contradict the model's pre-trained understanding.
arXiv Detail & Related papers (2024-03-02T12:19:04Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.