HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data
- URL: http://arxiv.org/abs/2311.13614v2
- Date: Mon, 25 Mar 2024 03:39:45 GMT
- Title: HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data
- Authors: Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wentao Ye, Bosheng Qin, Siliang Tang, Qi Tian, Yueting Zhuang,
- Abstract summary: hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
- Score: 102.56792377624927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal Large Language Models (MLLMs) tuned on machine-generated instruction-following data have demonstrated remarkable performance in various multi-modal understanding and generation tasks. However, the hallucinations inherent in machine-generated data, which could lead to hallucinatory outputs in MLLMs, remain under-explored. This work aims to investigate various hallucinations (i.e., object, relation, attribute hallucinations) and mitigate those hallucinatory toxicities in large-scale machine-generated visual instruction datasets. Drawing on the human ability to identify factual errors, we present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm. We use our framework to identify and eliminate hallucinations in the training data automatically. Interestingly, HalluciDoctor also indicates that spurious correlations arising from long-tail object co-occurrences contribute to hallucinations. Based on that, we execute counterfactual visual instruction expansion to balance data distribution, thereby enhancing MLLMs' resistance to hallucinations. Comprehensive experiments on hallucination evaluation benchmarks show that our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA. The data and code for this paper are publicly available. \url{https://github.com/Yuqifan1117/HalluciDoctor}.
Related papers
- The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States [0.5573267589690007]
We focus on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date.
This study investigates these hallucinations by detecting them at sentence level using different internal states of various language models.
Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers.
arXiv Detail & Related papers (2024-12-22T15:08:24Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.
This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.
Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Data-augmented phrase-level alignment for mitigating object hallucination [52.43197107069751]
Multimodal Large Language Models (MLLMs) often generate factually inaccurate information, referred to as hallucination.
We introduce Data-augmented Phrase-level Alignment (DPA), a novel loss which can be applied to instruction-tuned off-the-shelf MLLMs to mitigate hallucinations.
arXiv Detail & Related papers (2024-05-28T23:36:00Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning [15.156359255401812]
We propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models.
The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
arXiv Detail & Related papers (2024-04-16T07:14:32Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.