MisoDICE: Multi-Agent Imitation from Unlabeled Mixed-Quality Demonstrations
- URL: http://arxiv.org/abs/2505.18595v1
- Date: Sat, 24 May 2025 08:43:42 GMT
- Title: MisoDICE: Multi-Agent Imitation from Unlabeled Mixed-Quality Demonstrations
- Authors: The Viet Bui, Tien Mai, Hong Thanh Nguyen,
- Abstract summary: We study offline imitation learning (IL) in cooperative multi-agent settings, where demonstrations have unlabeled mixed quality.<n>Our proposed solution is structured in two stages: trajectory labeling and multi-agent imitation learning.<n>We introduce MisoDICE, a novel multi-agent IL algorithm that leverages these labels to learn robust policies.
- Score: 5.4482836906033585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study offline imitation learning (IL) in cooperative multi-agent settings, where demonstrations have unlabeled mixed quality - containing both expert and suboptimal trajectories. Our proposed solution is structured in two stages: trajectory labeling and multi-agent imitation learning, designed jointly to enable effective learning from heterogeneous, unlabeled data. In the first stage, we combine advances in large language models and preference-based reinforcement learning to construct a progressive labeling pipeline that distinguishes expert-quality trajectories. In the second stage, we introduce MisoDICE, a novel multi-agent IL algorithm that leverages these labels to learn robust policies while addressing the computational complexity of large joint state-action spaces. By extending the popular single-agent DICE framework to multi-agent settings with a new value decomposition and mixing architecture, our method yields a convex policy optimization objective and ensures consistency between global and local policies. We evaluate MisoDICE on multiple standard multi-agent RL benchmarks and demonstrate superior performance, especially when expert data is scarce.
Related papers
- Ensemble-MIX: Enhancing Sample Efficiency in Multi-Agent RL Using Ensemble Methods [0.0]
Multi-agent reinforcement learning (MARL) methods have achieved state-of-the-art results on a range of multi-agent tasks.<n>Yet, MARL algorithms require significantly more environment interactions than their single-agent counterparts to converge.<n>We propose a novel algorithm that combines a decomposed centralized critic with decentralized ensemble learning.
arXiv Detail & Related papers (2025-06-03T13:13:15Z) - Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences.<n> RLHF exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks.<n>We propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities.
arXiv Detail & Related papers (2025-05-19T08:33:11Z) - Offline Multi-agent Reinforcement Learning via Score Decomposition [51.23590397383217]
offline multi-agent reinforcement learning (MARL) faces critical challenges due to distributional shifts and the high dimensionality of joint action spaces.<n>We propose a novel two-stage framework for modeling diverse multi-agent coordination patterns.<n>Our approach provides new insights into offline coordination and equilibrium selection in cooperative multi-agent systems.
arXiv Detail & Related papers (2025-05-09T11:42:31Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Multi-Agent Inverse Q-Learning from Demonstrations [3.4136908117644698]
Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL) is a novel sample-efficient framework for multi-agent IRL.<n>We show MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x.
arXiv Detail & Related papers (2025-03-06T18:22:29Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Pathfinding [76.67608003501479]
We introduce POGEMA, a comprehensive set of tools that includes a fast environment for learning, a problem instance generator, and a visualization toolkit.<n>We also introduce and define an evaluation protocol that specifies a range of domain-related metrics, computed based on primary evaluation indicators.<n>The results of this comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.