Doc-CoB: Enhancing Multi-Modal Document Understanding with Visual Chain-of-Boxes Reasoning
- URL: http://arxiv.org/abs/2505.18603v1
- Date: Sat, 24 May 2025 08:53:05 GMT
- Title: Doc-CoB: Enhancing Multi-Modal Document Understanding with Visual Chain-of-Boxes Reasoning
- Authors: Ye Mo, Zirui Shao, Kai Ye, Xianwei Mao, Bo Zhang, Hangdi Xing, Peng Ye, Gang Huang, Kehan Chen, Zhou Huan, Zixu Yan, Sheng Zhou,
- Abstract summary: Existing one-pass MLLMs process entire document images without considering query relevance.<n>Inspired by the human coarse-to-fine reading pattern, we introduce Doc-CoB, a simple-yet-effective mechanism that integrates human-style visual reasoning into MLLM.<n>Our method allows the model to autonomously select the set of regions most relevant to the query, and then focus attention on them for further understanding.
- Score: 12.17399365931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) have made significant progress in document understanding. However, the information-dense nature of document images still poses challenges, as most queries depend on only a few relevant regions, with the rest being redundant. Existing one-pass MLLMs process entire document images without considering query relevance, often failing to focus on critical regions and producing unfaithful responses. Inspired by the human coarse-to-fine reading pattern, we introduce Doc-CoB (Chain-of-Box), a simple-yet-effective mechanism that integrates human-style visual reasoning into MLLM without modifying its architecture. Our method allows the model to autonomously select the set of regions (boxes) most relevant to the query, and then focus attention on them for further understanding. We first design a fully automatic pipeline, integrating a commercial MLLM with a layout analyzer, to generate 249k training samples with intermediate visual reasoning supervision. Then we incorporate two enabling tasks that improve box identification and box-query reasoning, which together enhance document understanding. Extensive experiments on seven benchmarks with four popular models show that Doc-CoB significantly improves performance, demonstrating its effectiveness and wide applicability. All code, data, and models will be released publicly.
Related papers
- QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
Fine-tuning a pre-trained Vision-Language Model with new datasets often falls short in optimizing the vision encoder.<n>We introduce QID, a novel, streamlined, architecture-preserving approach that integrates query embeddings into the vision encoder.
arXiv Detail & Related papers (2025-04-03T18:47:16Z) - M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization? [49.53982792497275]
We investigate whether Large Vision-Language Models (LVLMs) genuinely comprehend interleaved image-text in the document.<n>Existing document understanding benchmarks often assess LVLMs using question-answer formats.<n>We introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench)<n>M-DocSum-Bench comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences.
arXiv Detail & Related papers (2025-03-27T07:28:32Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.<n>We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.<n>We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
We propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens.
DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%.
Compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens.
arXiv Detail & Related papers (2024-09-05T11:09:00Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawk is a document-oriented Multimodal Large Language Model (MLLM)
It is designed to explore efficient fine-grained perception by designing four dedicated components.
We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-04-14T09:48:37Z) - HRVDA: High-Resolution Visual Document Assistant [32.51417315241559]
We propose a High-Resolution Visual Document Assistant (HRVDA) to bridge the gap between MLLMs and visual document understanding.
HRVDA employs a content filtering mechanism and an instruction filtering module to filter out the content-agnostic visual tokens and instruction-agnostic visual tokens.
Our model achieves state-of-the-art performance across multiple document understanding datasets.
arXiv Detail & Related papers (2024-04-10T11:10:50Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
Document understanding refers to automatically extract, analyze and comprehend information from digital documents, such as a web page.
Existing Multi-model Large Language Models (MLLMs) have demonstrated promising zero-shot capabilities in shallow OCR-free text recognition.
arXiv Detail & Related papers (2023-07-04T11:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.