Exemplar-Free Continual Learning for State Space Models
- URL: http://arxiv.org/abs/2505.18604v1
- Date: Sat, 24 May 2025 08:59:13 GMT
- Title: Exemplar-Free Continual Learning for State Space Models
- Authors: Isaac Ning Lee, Leila Mahmoodi, Trung Le, Mehrtash Harandi,
- Abstract summary: State-Space Models (SSMs) excel at capturing long-range dependencies with structured recurrence.<n>Their evolving internal states pose challenges in adapting them under Continual Learning.<n>We propose Inf-SSM, a novel and simple geometry-aware regularization method.
- Score: 32.73275711666184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-Space Models (SSMs) excel at capturing long-range dependencies with structured recurrence, making them well-suited for sequence modeling. However, their evolving internal states pose challenges in adapting them under Continual Learning (CL). This is particularly difficult in exemplar-free settings, where the absence of prior data leaves updates to the dynamic SSM states unconstrained, resulting in catastrophic forgetting. To address this, we propose Inf-SSM, a novel and simple geometry-aware regularization method that utilizes the geometry of the infinite-dimensional Grassmannian to constrain state evolution during CL. Unlike classical continual learning methods that constrain weight updates, Inf-SSM regularizes the infinite-horizon evolution of SSMs encoded in their extended observability subspace. We show that enforcing this regularization requires solving a matrix equation known as the Sylvester equation, which typically incurs $\mathcal{O}(n^3)$ complexity. We develop a $\mathcal{O}(n^2)$ solution by exploiting the structure and properties of SSMs. This leads to an efficient regularization mechanism that can be seamlessly integrated into existing CL methods. Comprehensive experiments on challenging benchmarks, including ImageNet-R and Caltech-256, demonstrate a significant reduction in forgetting while improving accuracy across sequential tasks.
Related papers
- Bridging Expressivity and Scalability with Adaptive Unitary SSMs [4.61803711540329]
We introduce the Adaptive Unitary State Space Model (AUSSM)- a novel class of SSMs that skew-symmetric, input-dependent recurrence to achieve unitary evolution and high expressive power.<n>Our results demonstrate that adaptive unitary recurrence provides a powerful and efficient algorithmic bias for both symbolic and continuous sequence modeling.
arXiv Detail & Related papers (2025-07-07T17:47:16Z) - Sequential-Parallel Duality in Prefix Scannable Models [68.39855814099997]
Recent developments have given rise to various models, such as Gated Linear Attention (GLA) and Mamba.<n>This raises a natural question: can we characterize the full class of neural sequence models that support near-constant-time parallel evaluation and linear-time, constant-space sequential inference?
arXiv Detail & Related papers (2025-06-12T17:32:02Z) - Message-Passing State-Space Models: Improving Graph Learning with Modern Sequence Modeling [19.10832920407789]
We introduce a new perspective by embedding the key principles of modern SSM directly into the Message-Passing Neural Network framework.<n>Our approach, MP-SSM, enables efficient, permutation-equivariant, and long-range information propagation while preserving the architectural simplicity of message passing.
arXiv Detail & Related papers (2025-05-24T14:53:07Z) - Learning to Dissipate Energy in Oscillatory State-Space Models [55.09730499143998]
State-space models (SSMs) are a class of networks for sequence learning.<n>We show that D-LinOSS consistently outperforms previous LinOSS methods on long-range learning tasks.
arXiv Detail & Related papers (2025-05-17T23:15:17Z) - The Sample Complexity of Online Reinforcement Learning: A Multi-model Perspective [55.15192437680943]
We study the sample complexity of online reinforcement learning in the general setting of nonlinear dynamical systems with continuous state and action spaces.<n>Our algorithm achieves a policy regret of $mathcalO(N epsilon2 + mathrmln(m(epsilon)/epsilon2)$, where $epsilon$ is the time horizon.<n>In the special case where the dynamics are parametrized by a compact and real-valued set of parameters, we prove a policy regret of $mathcalO(sqrt
arXiv Detail & Related papers (2025-01-27T10:01:28Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.<n>State Space Models (SSMs) have achieved notable success in computer vision.<n>We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - Learning Globally Smooth Functions on Manifolds [94.22412028413102]
Learning smooth functions is generally challenging, except in simple cases such as learning linear or kernel models.
This work proposes to overcome these obstacles by combining techniques from semi-infinite constrained learning and manifold regularization.
We prove that, under mild conditions, this method estimates the Lipschitz constant of the solution, learning a globally smooth solution as a byproduct.
arXiv Detail & Related papers (2022-10-01T15:45:35Z) - Efficiently Modeling Long Sequences with Structured State Spaces [15.456254157293836]
We propose a new sequence model based on a new parameterization for the fundamental state space model.
S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet.
arXiv Detail & Related papers (2021-10-31T03:32:18Z) - Entanglement-Embedded Recurrent Network Architecture: Tensorized Latent
State Propagation and Chaos Forecasting [0.0]
Chaotic time series forecasting has been far less understood.
Traditional statistical/ML methods are inefficient to capture chaos in nonlinear dynamical systems.
We introduce a new long-term-memory (LSTM)-based recurrent architecture.
arXiv Detail & Related papers (2020-06-10T23:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.