TULUN: Transparent and Adaptable Low-resource Machine Translation
- URL: http://arxiv.org/abs/2505.18683v1
- Date: Sat, 24 May 2025 12:58:58 GMT
- Title: TULUN: Transparent and Adaptable Low-resource Machine Translation
- Authors: Raphaƫl Merx, Hanna Suominen, Lois Hong, Nick Thieberger, Trevor Cohn, Ekaterina Vylomova,
- Abstract summary: Tulun is a versatile solution for terminology-aware translation.<n>Our open-source web-based platform enables users to easily create, edit, and leverage terminology resources.
- Score: 30.705550819100424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine translation (MT) systems that support low-resource languages often struggle on specialized domains. While researchers have proposed various techniques for domain adaptation, these approaches typically require model fine-tuning, making them impractical for non-technical users and small organizations. To address this gap, we propose Tulun, a versatile solution for terminology-aware translation, combining neural MT with large language model (LLM)-based post-editing guided by existing glossaries and translation memories. Our open-source web-based platform enables users to easily create, edit, and leverage terminology resources, fostering a collaborative human-machine translation process that respects and incorporates domain expertise while increasing MT accuracy. Evaluations show effectiveness in both real-world and benchmark scenarios: on medical and disaster relief translation tasks for Tetun and Bislama, our system achieves improvements of 16.90-22.41 ChrF++ points over baseline MT systems. Across six low-resource languages on the FLORES dataset, Tulun outperforms both standalone MT and LLM approaches, achieving an average improvement of 2.8 ChrF points over NLLB-54B.
Related papers
- Beyond Vanilla Fine-Tuning: Leveraging Multistage, Multilingual, and Domain-Specific Methods for Low-Resource Machine Translation [1.9639956888747314]
This paper contributes to artificial intelligence by proposing two approaches for adapting large language models (msLLMs)<n>As an application in engineering, these methods are implemented in NMT systems for Sinhala, Tamil, and English (six language pairs) in domain-specific, extremely low-resource settings.<n>Our experiments reveal that these approaches enhance translation performance by an average of +1.47 bilingual evaluation understudy (BLEU) score compared to the standard single-stage fine-tuning baseline.
arXiv Detail & Related papers (2025-03-28T16:30:28Z) - Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu [53.437954702561065]
In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT.<n>This study systematically investigates how each resource and its quality affects the translation performance, with the Manchu language.<n>Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help.
arXiv Detail & Related papers (2025-02-17T14:53:49Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Enhancing Neural Machine Translation of Low-Resource Languages: Corpus
Development, Human Evaluation and Explainable AI Architectures [0.0]
The Transformer architecture stands out as the gold standard, especially for high-resource language pairs.
The scarcity of parallel datasets for low-resource languages can hinder machine translation development.
This thesis introduces adaptNMT and adaptMLLM, two open-source applications streamlined for the development, fine-tuning, and deployment of neural machine translation models.
arXiv Detail & Related papers (2024-03-03T18:08:30Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - Exploiting Language Relatedness in Machine Translation Through Domain
Adaptation Techniques [3.257358540764261]
We present a novel approach of using a scaled similarity score of sentences, especially for related languages based on a 5-gram KenLM language model.
Our approach succeeds in increasing 2 BLEU point on multi-domain approach, 3 BLEU point on fine-tuning for NMT and 2 BLEU point on iterative back-translation approach.
arXiv Detail & Related papers (2023-03-03T09:07:30Z) - Dictionary-based Phrase-level Prompting of Large Language Models for
Machine Translation [91.57514888410205]
Large language models (LLMs) demonstrate remarkable machine translation (MT) abilities via prompting.
LLMs can struggle to translate inputs with rare words, which are common in low resource or domain transfer scenarios.
We show that LLM prompting can provide an effective solution for rare words as well, by using prior knowledge from bilingual dictionaries to provide control hints in the prompts.
arXiv Detail & Related papers (2023-02-15T18:46:42Z) - Active Learning for Neural Machine Translation [0.0]
We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation.
This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM), active learning least confidence based model (ALLCM) and active learning margin sampling based model (ALMSM) when translating English to Hindi.
arXiv Detail & Related papers (2022-12-30T17:04:01Z) - Improving Multilingual Neural Machine Translation System for Indic
Languages [0.0]
We propose a multilingual neural machine translation (MNMT) system to address the issues related to low-resource language translation.
A state-of-the-art transformer architecture is used to realize the proposed model.
Trials over a good amount of data reveal its superiority over the conventional models.
arXiv Detail & Related papers (2022-09-27T09:51:56Z) - Building Multilingual Machine Translation Systems That Serve Arbitrary
X-Y Translations [75.73028056136778]
We show how to practically build MNMT systems that serve arbitrary X-Y translation directions.
We also examine our proposed approach in an extremely large-scale data setting to accommodate practical deployment scenarios.
arXiv Detail & Related papers (2022-06-30T02:18:15Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.