Large Language Models in the Task of Automatic Validation of Text Classifier Predictions
- URL: http://arxiv.org/abs/2505.18688v1
- Date: Sat, 24 May 2025 13:19:03 GMT
- Title: Large Language Models in the Task of Automatic Validation of Text Classifier Predictions
- Authors: Aleksandr Tsymbalov,
- Abstract summary: Machine learning models for text classification are trained to predict a class for a given text.<n>To do this, training and validation samples must be prepared, and each text is assigned a class.<n>Human annotators are usually assigned by human annotators with different expertise levels, depending on the specific classification task.<n>This paper proposes several approaches to replace human annotators with Large Language Models.
- Score: 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models for text classification are trained to predict a class for a given text. To do this, training and validation samples must be prepared: a set of texts is collected, and each text is assigned a class. These classes are usually assigned by human annotators with different expertise levels, depending on the specific classification task. Collecting such samples from scratch is labor-intensive because it requires finding specialists and compensating them for their work; moreover, the number of available specialists is limited, and their productivity is constrained by human factors. While it may not be too resource-intensive to collect samples once, the ongoing need to retrain models (especially in incremental learning pipelines) to address data drift (also called model drift) makes the data collection process crucial and costly over the model's entire lifecycle. This paper proposes several approaches to replace human annotators with Large Language Models (LLMs) to test classifier predictions for correctness, helping ensure model quality and support high-quality incremental learning.
Related papers
- Ensembling Finetuned Language Models for Text Classification [55.15643209328513]
Finetuning is a common practice across different communities to adapt pretrained models to particular tasks.
ensembles of neural networks are typically used to boost performance and provide reliable uncertainty estimates.
We present a metadataset with predictions from five large finetuned models on six datasets and report results of different ensembling strategies.
arXiv Detail & Related papers (2024-10-25T09:15:54Z) - Task-Adaptive Pretrained Language Models via Clustered-Importance Sampling [21.762562172089236]
Specialist language models (LMs) focus on a specific task or domain on which they often outperform generalist LMs of the same size.<n>We build specialist models from large generalist training sets instead.<n>CRISP clusters the generalist dataset and samples from these clusters based on their frequencies in the smaller specialist dataset.
arXiv Detail & Related papers (2024-09-30T20:49:54Z) - Detection and Measurement of Syntactic Templates in Generated Text [58.111650675717414]
We offer an analysis of syntactic features to characterize general repetition in models.
We find that models tend to produce templated text in downstream tasks at a higher rate than what is found in human-reference texts.
arXiv Detail & Related papers (2024-06-28T19:34:23Z) - Simple-Sampling and Hard-Mixup with Prototypes to Rebalance Contrastive Learning for Text Classification [11.072083437769093]
We propose a novel model named SharpReCL for imbalanced text classification tasks.
Our model even outperforms popular large language models across several datasets.
arXiv Detail & Related papers (2024-05-19T11:33:49Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Harnessing the Power of Beta Scoring in Deep Active Learning for
Multi-Label Text Classification [6.662167018900634]
Our study introduces a novel deep active learning strategy, capitalizing on the Beta family of proper scoring rules within the Expected Loss Reduction framework.
It computes the expected increase in scores using the Beta Scoring Rules, which are then transformed into sample vector representations.
Comprehensive evaluations across both synthetic and real datasets reveal our method's capability to often outperform established acquisition techniques in multi-label text classification.
arXiv Detail & Related papers (2024-01-15T00:06:24Z) - Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
We propose the novel Part of Stroke Masking (POSM) as a pretext task for pretraining models to extract informative representations from the online handwriting of individuals in English and Chinese languages.
To evaluate the quality of the extracted representations, we use both intrinsic and extrinsic evaluation methods.
The pretrained models are fine-tuned to achieve state-of-the-art results in tasks such as writer identification, gender classification, and handedness classification.
arXiv Detail & Related papers (2023-10-10T14:07:49Z) - Unsupervised Calibration through Prior Adaptation for Text
Classification using Large Language Models [37.39843935632105]
We propose an approach to adapt the prior class distribution to perform text classification tasks without the need for labelled samples.
Results show that these methods outperform the un-adapted model for different number of training shots in the prompt.
arXiv Detail & Related papers (2023-07-13T12:11:36Z) - Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing [78.8500633981247]
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning"
Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly.
arXiv Detail & Related papers (2021-07-28T18:09:46Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.