Harnessing the Power of Beta Scoring in Deep Active Learning for
Multi-Label Text Classification
- URL: http://arxiv.org/abs/2401.07395v1
- Date: Mon, 15 Jan 2024 00:06:24 GMT
- Title: Harnessing the Power of Beta Scoring in Deep Active Learning for
Multi-Label Text Classification
- Authors: Wei Tan, Ngoc Dang Nguyen, Lan Du, Wray Buntine
- Abstract summary: Our study introduces a novel deep active learning strategy, capitalizing on the Beta family of proper scoring rules within the Expected Loss Reduction framework.
It computes the expected increase in scores using the Beta Scoring Rules, which are then transformed into sample vector representations.
Comprehensive evaluations across both synthetic and real datasets reveal our method's capability to often outperform established acquisition techniques in multi-label text classification.
- Score: 6.662167018900634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the scope of natural language processing, the domain of multi-label
text classification is uniquely challenging due to its expansive and uneven
label distribution. The complexity deepens due to the demand for an extensive
set of annotated data for training an advanced deep learning model, especially
in specialized fields where the labeling task can be labor-intensive and often
requires domain-specific knowledge. Addressing these challenges, our study
introduces a novel deep active learning strategy, capitalizing on the Beta
family of proper scoring rules within the Expected Loss Reduction framework. It
computes the expected increase in scores using the Beta Scoring Rules, which
are then transformed into sample vector representations. These vector
representations guide the diverse selection of informative samples, directly
linking this process to the model's expected proper score. Comprehensive
evaluations across both synthetic and real datasets reveal our method's
capability to often outperform established acquisition techniques in
multi-label text classification, presenting encouraging outcomes across various
architectural and dataset scenarios.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
We study multi-label classification in the continual scenario for the first time.
We propose an efficient approach that has a logarithmic complexity with regard to the number of tasks.
We validate our approach on a real-world multi-label Forecasting problem from the packaging industry.
arXiv Detail & Related papers (2022-08-08T15:58:39Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - A Survey on Recent Advances in Sequence Labeling from Deep Learning
Models [19.753741555478793]
Sequence labeling is a fundamental research problem encompassing a variety of tasks.
Deep learning has been employed for sequence labeling tasks due to its powerful capability in automatically learning complex features.
arXiv Detail & Related papers (2020-11-13T02:29:50Z) - Predicting Themes within Complex Unstructured Texts: A Case Study on
Safeguarding Reports [66.39150945184683]
We focus on the problem of automatically identifying the main themes in a safeguarding report using supervised classification approaches.
Our results show the potential of deep learning models to simulate subject-expert behaviour even for complex tasks with limited labelled data.
arXiv Detail & Related papers (2020-10-27T19:48:23Z) - Text Recognition in Real Scenarios with a Few Labeled Samples [55.07859517380136]
Scene text recognition (STR) is still a hot research topic in computer vision field.
This paper proposes a few-shot adversarial sequence domain adaptation (FASDA) approach to build sequence adaptation.
Our approach can maximize the character-level confusion between the source domain and the target domain.
arXiv Detail & Related papers (2020-06-22T13:03:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.