AI-Driven Climate Policy Scenario Generation for Sub-Saharan Africa
- URL: http://arxiv.org/abs/2505.18694v1
- Date: Sat, 24 May 2025 13:38:17 GMT
- Title: AI-Driven Climate Policy Scenario Generation for Sub-Saharan Africa
- Authors: Rafiu Adekoya Badekale, Adewale Akinfaderin,
- Abstract summary: We use generative AI to simulate climate policy scenarios for Sub-Saharan Africa.<n>The project aims to create plausible and diverse policy scenarios that align with regional climate goals and energy challenges.<n>Our structured, embedding-based evaluation framework shows that generative AI effectively generate scenarios that are coherent, relevant, plausible, and diverse.
- Score: 0.005755004576310333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate policy scenario generation and evaluation have traditionally relied on integrated assessment models (IAMs) and expert-driven qualitative analysis. These methods enable stakeholders, such as policymakers and researchers, to anticipate impacts, plan governance strategies, and develop mitigation measures. However, traditional methods are often time-intensive, reliant on simple extrapolations of past trends, and limited in capturing the complex and interconnected nature of energy and climate issues. With the advent of artificial intelligence (AI), particularly generative AI models trained on vast datasets, these limitations can be addressed, ensuring robustness even under limited data conditions. In this work, we explore the novel method that employs generative AI, specifically large language models (LLMs), to simulate climate policy scenarios for Sub-Saharan Africa. These scenarios focus on energy transition themes derived from the historical United Nations Climate Change Conference (COP) documents. By leveraging generative models, the project aims to create plausible and diverse policy scenarios that align with regional climate goals and energy challenges. Given limited access to human evaluators, automated techniques were employed for scenario evaluation. We generated policy scenarios using the llama3.2-3B model. Of the 34 generated responses, 30 (88%) passed expert validation, accurately reflecting the intended impacts provided in the corresponding prompts. We compared these validated responses against assessments from a human climate expert and two additional LLMs (gemma2-2B and mistral-7B). Our structured, embedding-based evaluation framework shows that generative AI effectively generate scenarios that are coherent, relevant, plausible, and diverse. This approach offers a transformative tool for climate policy planning in data-constrained regions.
Related papers
- Temporal Analysis of Climate Policy Discourse: Insights from Dynamic Embedded Topic Modeling [0.005755004576310333]
Temporal analysis helps stakeholders, including policymakers and researchers, to evaluate past priorities, identify emerging themes, design governance strategies, and develop mitigation measures.<n>Traditional approaches, such as manual thematic coding, are time-consuming and limited in capturing the complex, interconnected nature of global policy discourse.<n>We apply the dynamic embedded topic model (DETM) to analyze the evolution of global climate policy discourse.
arXiv Detail & Related papers (2025-07-08T22:30:01Z) - Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis [5.738989367102034]
Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests.<n>We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations.
arXiv Detail & Related papers (2025-04-17T09:18:04Z) - ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method [61.76389719956301]
We contribute a multi-modal climate benchmark, i.e., ClimateBench-M, which aligns time series climate data from ERA5, extreme weather events data from NOAA, and satellite image data from NASA.<n>Under each data modality, we also propose a simple but strong generative method that could produce competitive performance in weather forecasting, thunderstorm alerts, and crop segmentation tasks.
arXiv Detail & Related papers (2025-04-10T02:22:23Z) - Are Deep Learning Methods Suitable for Downscaling Global Climate Projections? Review and Intercomparison of Existing Models [0.0]
Perfect Prognosis (PP) and Regional Climate Model (RCM) emulation have shown promise for downscaling global climate change projections.
Unlike emulators, PP downscaling models are trained on observational data, so it remains an open question whether they can plausibly extrapolate unseen conditions and changes in future emissions scenarios.
We identify state-of-the-art DL models for PP downscaling and evaluate their extrapolation capability using a common experimental framework.
arXiv Detail & Related papers (2024-11-06T18:05:45Z) - Crafting desirable climate trajectories with RL explored socio-environmental simulations [3.554161433683967]
Integrated Assessment Models (IAMs) combine social, economic, and environmental simulations to forecast potential policy effects.
Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios.
We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations.
arXiv Detail & Related papers (2024-10-09T13:21:50Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - An evidence-based methodology for human rights impact assessment (HRIA) in the development of AI data-intensive systems [49.1574468325115]
We show that human rights already underpin the decisions in the field of data use.
This work presents a methodology and a model for a Human Rights Impact Assessment (HRIA)
The proposed methodology is tested in concrete case-studies to prove its feasibility and effectiveness.
arXiv Detail & Related papers (2024-07-30T16:27:52Z) - Characterizing climate pathways using feature importance on echo state
networks [0.0]
echo state network (ESN) is a computationally efficient neural network variation designed for temporal data.
ESNs are non-interpretable black-box models, which poses a hurdle for understanding variable relationships.
We conduct a simulation study to assess and compare the feature importance techniques, and we demonstrate the approach on reanalysis climate data.
arXiv Detail & Related papers (2023-10-12T16:55:04Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution.
We provide a critical assessment of the currently used validation methods in the energy scenario generation literature.
We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods.
arXiv Detail & Related papers (2021-10-27T14:14:25Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.