Crafting desirable climate trajectories with RL explored socio-environmental simulations
- URL: http://arxiv.org/abs/2410.07287v1
- Date: Wed, 9 Oct 2024 13:21:50 GMT
- Title: Crafting desirable climate trajectories with RL explored socio-environmental simulations
- Authors: James Rudd-Jones, Fiona Thendean, María Pérez-Ortiz,
- Abstract summary: Integrated Assessment Models (IAMs) combine social, economic, and environmental simulations to forecast potential policy effects.
Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios.
We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations.
- Score: 3.554161433683967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change poses an existential threat, necessitating effective climate policies to enact impactful change. Decisions in this domain are incredibly complex, involving conflicting entities and evidence. In the last decades, policymakers increasingly use simulations and computational methods to guide some of their decisions. Integrated Assessment Models (IAMs) are one of such methods, which combine social, economic, and environmental simulations to forecast potential policy effects. For example, the UN uses outputs of IAMs for their recent Intergovernmental Panel on Climate Change (IPCC) reports. Traditionally these have been solved using recursive equation solvers, but have several shortcomings, e.g. struggling at decision making under uncertainty. Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios. We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations that drives much of the current climate crisis. Our findings show that cooperative agents in this framework can consistently chart pathways towards more desirable futures in terms of reduced carbon emissions and improved economy. However, upon introducing competition between agents, for instance by using opposing reward functions, desirable climate futures are rarely reached. Modelling competition is key to increased realism in these simulations, as such we employ policy interpretation by visualising what states lead to more uncertain behaviour, to understand algorithm failure. Finally, we highlight the current limitations and avenues for further work to ensure future technology uptake for policy derivation.
Related papers
- Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Decision Making in Non-Stationary Environments with Policy-Augmented
Search [9.000981144624507]
We introduce textitPolicy-Augmented Monte Carlo tree search (PA-MCTS)
It combines action-value estimates from an out-of-date policy with an online search using an up-to-date model of the environment.
We prove theoretical results showing conditions under which PA-MCTS selects the one-step optimal action and also bound the error accrued while following PA-MCTS as a policy.
arXiv Detail & Related papers (2024-01-06T11:51:50Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
We introduce Extreme Model Output Statistics (X-MOS) to improve predictions of natural disaster risks.
This approach utilizes deep regression techniques to precisely map CMIP model outputs to real measurements obtained from weather stations.
In contrast to previous research, our study places a strong emphasis on enhancing the estimation of the tails of future climate parameter distributions.
arXiv Detail & Related papers (2023-10-24T13:18:53Z) - Characterizing climate pathways using feature importance on echo state
networks [0.0]
echo state network (ESN) is a computationally efficient neural network variation designed for temporal data.
ESNs are non-interpretable black-box models, which poses a hurdle for understanding variable relationships.
We conduct a simulation study to assess and compare the feature importance techniques, and we demonstrate the approach on reanalysis climate data.
arXiv Detail & Related papers (2023-10-12T16:55:04Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
No global authority can ensure compliance with international climate agreements.
RICE-N supports modeling regional decision-making using AI agents.
The IAM then models the climate-economic impact of those decisions into the future.
arXiv Detail & Related papers (2023-07-10T20:05:42Z) - Dichotomy of Control: Separating What You Can Control from What You
Cannot [129.62135987416164]
We propose a future-conditioned supervised learning framework that separates mechanisms within a policy's control (actions) from those beyond a policy's control (environmentity)
We show that DoC yields policies that are consistent with their conditioning inputs, ensuring that conditioning a learned policy on a desired high-return future outcome will correctly induce high-return behavior.
arXiv Detail & Related papers (2022-10-24T17:49:56Z) - AI for Global Climate Cooperation: Modeling Global Climate Negotiations,
Agreements, and Long-Term Cooperation in RICE-N [75.67460895629348]
Achieving long-term cooperation on climate change mitigation with n strategic agents poses a complex game-theoretic problem.
We introduce RICE-N, a multi-region integrated assessment model that simulates the global climate and economy.
We describe how to use multi-agent reinforcement learning to train rational agents using RICE-N.
arXiv Detail & Related papers (2022-08-15T04:38:06Z) - Remote sensing, AI and innovative prediction methods for adapting cities
to the impacts of the climate change [0.0]
I propose an AI-based framework which might be useful for extracting indicators from remote sensing images.
I underline that this is an open field and an ongoing research for many scientists, therefore I offer an in depth discussion on the challenges and limitations of AI-based methods.
arXiv Detail & Related papers (2021-07-06T15:55:26Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.