Quantum simulation of elastic wave equations via Schrödingerisation
- URL: http://arxiv.org/abs/2505.18711v1
- Date: Sat, 24 May 2025 14:16:39 GMT
- Title: Quantum simulation of elastic wave equations via Schrödingerisation
- Authors: Shi Jin, Chundan Zhang,
- Abstract summary: We study quantum simulation algorithms on the elastic wave equations using the Schr"odingerisation method.<n>For the velocity-stress equation in isotropic media, we explore the symmetric matrix form under the external forcing via Schr"odingerisation combined with spectral method.<n>For the wave displacement equation, we transform it into a hyperbolic system and apply the Schr"odingerisation method, which is then discretized by the spectral method and central difference scheme.
- Score: 26.502965344680117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we study quantum simulation algorithms on the elastic wave equations using the Schr\"odingerisation method. The Schr\"odingerisation method transforms any linear PDEs into a system of Schr\"odinger-type PDEs -with unitary evolution-using the warped phase transformation that maps the equations in one higher dimension. This makes them suitable for quantum simulations. We expore the application in two forms of the elastic wave equations. For the velocity-stress equation in isotropic media, we explore the symmetric matrix form under the external forcing via Schr\"odingerisation combined with spectral method. For problems with variable medium parameters, we apply Schr\"odingerisation method based on the staggered grid method to simulate velocity and stress fields, and give the complexity estimates. For the wave displacement equation, we transform it into a hyperbolic system and apply the Schr\"odingerisation method, which is then discretized by the spectral method and central difference scheme. Details of the quantum algorithms will be provided, along with the complexity analysis which demontrate exponential quantum advantage in space dimensin over the classical algorithms.
Related papers
- Schrödingerization based Quantum Circuits for Maxwell's Equation with time-dependent source terms [24.890270804373824]
This paper explicitly constructs a quantum circuit for Maxwell's equations with perfect electric conductor (PEC) boundary conditions.
We show that quantum algorithms constructed using Schr"odingerisation exhibit acceleration in computational complexity compared to the classical Finite Difference Time Domain (FDTD) format.
arXiv Detail & Related papers (2024-11-17T08:15:37Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.<n>We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.<n>We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Quantum simulation of the Fokker-Planck equation via Schrodingerization [33.76659022113328]
This paper studies a quantum simulation technique for solving the Fokker-Planck equation.
We employ the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations.
arXiv Detail & Related papers (2024-04-21T08:53:27Z) - Quantum Circuits for partial differential equations via Schrödingerisation [26.7034263292622]
We present implementation of a quantum algorithm for general PDEs using Schr"odingerisation techniques.<n>We provide examples of the heat equation, and the advection equation approximated by the upwind scheme.
arXiv Detail & Related papers (2024-03-15T05:42:03Z) - Quantum simulation of Maxwell's equations via Schr\"odingersation [27.193565893837356]
We present quantum algorithms for electromagnetic fields governed by Maxwell's equations.
The algorithms are based on the Schr"odingersation approach.
Instead of qubits, the quantum algorithms can also be formulated in the continuous variable quantum framework.
arXiv Detail & Related papers (2023-08-16T14:52:35Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.