VLA-RL: Towards Masterful and General Robotic Manipulation with Scalable Reinforcement Learning
- URL: http://arxiv.org/abs/2505.18719v1
- Date: Sat, 24 May 2025 14:42:51 GMT
- Title: VLA-RL: Towards Masterful and General Robotic Manipulation with Scalable Reinforcement Learning
- Authors: Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong Tang, Ziwei Wang,
- Abstract summary: We present VLA-RL, an exploration-based framework that improves on online collected data at test time.<n>We fine-tune a pretrained vision-language model as a robotic process reward model, which is trained on pseudo reward labels annotated on automatically extracted task segments.<n>VLA-RL enables OpenVLA-7B to surpass the strongest finetuned baseline by 4.5% on 40 challenging robotic manipulation tasks in LIBERO.
- Score: 14.099306230721245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent high-capacity vision-language-action (VLA) models have demonstrated impressive performance on a range of robotic manipulation tasks by imitating human demonstrations. However, exploiting offline data with limited visited states will cause execution failure in out-of-distribution scenarios. Intuitively, an exploration-based method that improves on online collected data at test time could address this limitation. We present VLA-RL, an algorithmic and systematic framework that leverages online reinforcement learning (RL) to improve pretrained auto-regressive VLAs in downstream tasks. Within a unified perspective, we first introduce a trajectory-level RL formulation for auto-regressive VLA training, which models general robotic manipulation trajectory as multi-modal multi-turn conversation. To address the challenge of sparse rewards, we fine-tune a pretrained vision-language model as a robotic process reward model, which is trained on pseudo reward labels annotated on automatically extracted task segments. To scale up, we identify several implementation findings that improve the stability and efficiency including curriculum selection strategy, GPU-balanced vectorized environments, batch decoding, and critic warmup. VLA-RL enables OpenVLA-7B to surpass the strongest finetuned baseline by 4.5% on 40 challenging robotic manipulation tasks in LIBERO, and even matches the performance of advanced commercial models such as $\pi_0$-FAST. Notably, we observe that VLA-RL benefits from increased test-time optimization, indicating an early spark of inference scaling laws in robotics.
Related papers
- EdgeVLA: Efficient Vision-Language-Action Models [0.4005096060512278]
This paper introduces Edge VLA, a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models.<n>We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs)<n>Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency.
arXiv Detail & Related papers (2025-07-18T16:15:09Z) - SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [69.54069477520534]
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities.<n>Their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation.<n>We propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens.
arXiv Detail & Related papers (2025-06-15T05:04:17Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)<n>Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.<n>In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - Improving Vision-Language-Action Model with Online Reinforcement Learning [17.043068379668842]
Recent studies have successfully integrated large vision-language models into low-level robotic control by supervised fine-tuning.<n>We propose iRe-VLA framework, which iterates between Reinforcement Learning and Supervised Learning to effectively improve VLA models.
arXiv Detail & Related papers (2025-01-28T02:53:48Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.<n>We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.<n>We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - Latent Action Pretraining from Videos [156.88613023078778]
We introduce Latent Action Pretraining for general Action models (LAPA)<n>LAPA is an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels.<n>We propose a method to learn from internet-scale videos that do not have robot action labels.
arXiv Detail & Related papers (2024-10-15T16:28:09Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.<n>On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning [61.10299147201369]
This paper introduces a novel autonomous RL approach, called DigiRL, for training in-the-wild device control agents.
We build a scalable and parallelizable Android learning environment equipped with a VLM-based evaluator.
We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute improvement.
arXiv Detail & Related papers (2024-06-14T17:49:55Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
We benchmark 11 offline reinforcement learning algorithms in realistic quadrupedal locomotion dataset.
Experiments show that the best-performing ORL algorithms can achieve competitive performance compared with the model-free RL.
Our proposed benchmark will serve as a development platform for testing and evaluating the performance of ORL algorithms in real-world legged locomotion tasks.
arXiv Detail & Related papers (2023-09-13T13:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.